K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2016

Ta có :

\(\left[\left(a+b\right)+\left(c+d\right)+e\right]^2\)

\(=\left(a+b\right)^2+\left(c+d\right)^2+e^2+2\left[\left(a+b\right)\left(c+d\right)+\left(a+b\right)e+\left(c+d\right)e\right]\)

\(=\left(a^2+b^2+c^2+d^2+e^2\right)+2ab+2cd+2\left[\left(a+b\right)\left(c+d\right)+\left(a+b\right)e+\left(c+d\right)e\right]\)

\(=\left(a^2+b^2+c^2+d^2+e^2\right)+2\left[ab+cd+\left(a+b\right)\left(c+d\right)+\left(a+b\right)e+\left(c+d\right)e\right]\)

Do \(2\left[ab+cd+\left(a+b\right)\left(c+d\right)+\left(a+b\right)e+\left(c+d\right)e\right]\)chia hết cho 2 và \(\left(a^2+b^2+c^2+d^2+e^2\right)\)chia hết cho 2 nên \(\left(a+b+c+d+e\right)^2\)chia hết cho 2

\(\Rightarrow a+b+c+d+e\)chia hết cho 2

Đồng thời có \(a+b+c+d+e>2\)( Bắt buộc )

\(\Rightarrow\)a+b+c+d+e là hợp số

Bài này mình nhóm 3 số lại để trở thành hẳng đẳng thức đơn giản cho bạn dễ hiểu.

28 tháng 10 2016

em lớp 6 nhìn bài giảng của chị CTV hoa hết cả mắt chẳng hiểu chi nổi. 

em xin trình bày cách của em lập luận có gì thiếu sót chị chỉ bảo .

a^2+b^2+c^2+d^2+e^2 chia hết cho 2

* nếu a,b,c,d,e đều chẵn => hiển nhiên A=(a+b+c+d+e) là hợp số vì a,b,c,d,e>0

*nếu trong số (a,b,c,d,e) có số lẻ bình phương số lẻ là một số lẻ vậy do vậy số các con số lẻ phải chẵn

như vậy a+b+c+d+e cũng là một số chắn

mà a,b,c,d,e>0 do vậy a+b+c+d+e khác 2  vậy a+b+c+d+e=2k với k khác 1 => dpcm.

( ở đây em chỉ cần khác 2  loại số nguyên tố chẵn ) thực tế a+b+c+d+e >6)

21 tháng 6 2015

Là:

a>b,c,d,e

b>c,d,e

c>d,e

d>e

đúng ko?

21 tháng 6 2015

Là:

a>b,c,d,e

b>c,d,e

c>d,e

d>e

đúng ko?

23 tháng 6 2015

Đặt P=(a-b)(a-c)(a-d)(a-e)(b-c)(b-d)(b-e)(c-d)(c-e)(d-e)

*Với 5 số a,b,c,d,e có ít nhất 2 số khi chia cho 3 có cùng số dư, không mất tính tổng quát giả sử hai số đó là a và b khi đó a-b chia hết cho 3. Bỏ đi b, xét 4 số còn lại. Trong 4 số này có ít nhất 2 số khi chia cho 3 có cùng số dư, không mất tính tổng quát giả sử 2 số đó là d và e khi đó d-e chia hết cho 3. =>P chia hết cho 9(1).

*Trong 5 số tự nhiên có ít nhất 3 số cùng tính chẵn lẻ.

-Nếu có cả 5 số cùng tính chẵn lẻ hiển nhiên tất cả các thừa số của P đều chia hết cho 2.

=>P chia hết cho

=>P chia hết cho

=>P chia hết cho 32

-Nếu trong 5 số có 4 số cùng tính chẵn lẻ, 4 số này tạo ra 6 thừa số của tích, mà mỗi tích đều chia hết cho 2.

=>P chia hết cho

=>P chia hết cho

=>P chia hết cho 32

-Nếu trong 5 số có 3 số cùng tính chẵn, không mất tính tổng quát giả sử đó là a,b,c.

Đặt a=2.m,b=2.n,c=2.p,d=2.q+1,e=2.l+1

=>P là tích của 16(m-n)(m-p)(n-p)(q-l) và 6 thừa số lẻ. Trong 3 số m,n,p có ít nhất 2 số cùng tính chẵn lẻ, chúng tạo ra 1 thừa số chia hết cho 2.

=>P chia hết cho 32

Tương tự với 3 số cùng lẻ và 2 số cùng chẵn thì P chia hết cho 32.

=> P chia hết cho 32(2).

Từ (1) và (2) ta thấy: P chia hết cho 9 và 32.

Mà (9,32)=1

=>P chia hết cho 9.32.

=>P chia hết cho 288

=> ĐPCM

23 tháng 6 2015

Đặt P=(a-b)(a-c)(a-d)(a-e)(b-c)(b-d)(b-e)(c-d)(c-e)(d-e)

*Với 5 số a,b,c,d,e có ít nhất 2 số khi chia cho 3 có cùng số dư, không mất tính tổng quát giả sử hai số đó là a và b khi đó a-b chia hết cho 3. Bỏ đi b, xét 4 số còn lại. Trong 4 số này có ít nhất 2 số khi chia cho 3 có cùng số dư, không mất tính tổng quát giả sử 2 số đó là d và e khi đó d-e chia hết cho 3. =>P chia hết cho 9(1).

*Trong 5 số tự nhiên có ít nhất 3 số cùng tính chẵn lẻ.

-Nếu có cả 5 số cùng tính chẵn lẻ hiển nhiên tất cả các thừa số của P đều chia hết cho 2.

=>P chia hết cho

=>P chia hết cho

=>P chia hết cho 32

-Nếu trong 5 số có 4 số cùng tính chẵn lẻ, 4 số này tạo ra 6 thừa số của tích, mà mỗi tích đều chia hết cho 2.

=>P chia hết cho

=>P chia hết cho

=>P chia hết cho 32

-Nếu trong 5 số có 3 số cùng tính chẵn, không mất tính tổng quát giả sử đó là a,b,c.

Đặt a=2.m,b=2.n,c=2.p,d=2.q+1,e=2.l+1

=>P là tích của 16(m-n)(m-p)(n-p)(q-l) và 6 thừa số lẻ. Trong 3 số m,n,p có ít nhất 2 số cùng tính chẵn lẻ, chúng tạo ra 1 thừa số chia hết cho 2.

=>P chia hết cho 32

Tương tự với 3 số cùng lẻ và 2 số cùng chẵn thì P chia hết cho 32.

=> P chia hết cho 32(2).

Từ (1) và (2) ta thấy: P chia hết cho 9 và 32.

Mà (9,32)=1

=>P chia hết cho 9.32.

=>P chia hết cho 288

=> ĐPCM

12 tháng 12 2016

Giả sử 2 số trong 5 số không bằng nhau . VD : a<b (1)

Vì vậy do a^b=b^c mà a<b => c<b

Ta có b^c=c^d mà c<b => c<d

Ta có c^d = d^e mà c<d => e<d

Ta có d^e = e^a mà e<d =>. a>e

Ta có e^a = a^b mà a>e => a>b (2_)

Từ (1) và (2)

Vậy a=b=c=d

Chúc bạn học tốt

12 tháng 12 2016

Giả sử 2 số trong 5 số không bằng nhau. VD a<b (1)

Trong 2 lũy thừa bằng nhau thì lũy thừa có cơ số nhỏ hơn sẽ có số mũ lớn hơn và ngược lại

Vì vậy do: ab=bc mà a<b => b>c

Ta có

Ta có
Ta có d

Ta có b (2)


Từ (1) và (2) => điều giả sử sai

Vậy (đpcm)

17 tháng 4 2021

Có $a^2+b^2+c^2+d^2+e^2=(a+b)^2+(c+d)^2+e^2-2ab-2cd$

$=(a+b+c+d)^2+e^2 -2.(a+b)(c+d)-2ab-2cd$

$=(a+b+c+d+e)^2-2.(a+b+c+d).e-2.(a+b)(c+d)-2ab-2cd$

Mà $a^2+b^2+c^2+d^2+e^2\vdots 2;-2.(a+b+c+d).e-2.(a+b)(c+d)-2ab-2cd \vdots 2$ nên $(a+b+c+d+e)^2 \vdots 2$

Suy ra $a+b+c+d+e \vdots 2$

$a;b;c;d;e$ nguyên dương nên $a+b+c+d>2$

suy ra $a+b+c+d+e$ là hợp số

23 tháng 7 2017

viết dạng hệ cho dẽ nhìn 
a^b = b^c (1) 
b^c = c^d (2) 
c^d = d^e (3) 
d^e = e^a(4) 
e^a=a^b(5) 
*********dùng pp phải chứng 
******************* 
giả sử có 5 số tự nhiên thỏa mãn trên 
không thay đổi ý nghia giả sử 
a>=b>=c>=d>e>=1 
*****hàm mũ lũy thừa cơ số 1 rất đặc biệt khử cái này trước******* 
nếu e=1 
=> a>=b>=c>=d>=2 (*) 
từ (5) => a=1 hoặc b=0 => không thỏa mãn (*)=> e<>1 
ok 
giờ có 
a>=b>=c>=d>e>=2 
từ(3) 
c^d = d^e (3) 
c>=d=> d<=e mâu thuẫn d>e 
các số a,b,c,d,e có thể hoán đổi vị trí cho nhau 
=>ít nhất có một phương trình không thỏa mãn 
=> dpcm

16 tháng 3 2018

cái ồn

22 tháng 2 2018

Xét a^2-a = a.(a-1) chia hết cho 2

Tương tự : b^2-b;c^2-c;d^2-d;e^2-e đều chia hết cho 2

=> (a^2+b^2+c^2+d^2+e^2)-(a+b+c+d) chia hết cho 2

Mà a^2+b^2+c^2+d^2+e^2 chia hết cho 2 => a+b+c+d chia hết cho 2

Lại có : a+b+c+d+e > 2 => a+b+c+d+e là hợp sô

Tk mk nha

22 tháng 2 2018

Xét ( a2 + b2 + c2 + d2 ) - ( a + b + c + d)

 = a(a -1) + b( b -1) + c( c – 1) + d( d – 1)

Vì a là số nguyên dương nên a, (a – 1) là hai số tự nhiên liên tiếp

=> a(a-1) chia hết cho 2.

Tương tự ta có b(b-1); c(c-1); d(d-1) đều chia hết cho 2

=> a(a -1) + b( b -1) + c( c – 1) + d( d – 1) là số chẵn 

Lại có a2 + c2 = b2 + d2

=> a2 + b2 + c2 + d2 = 2( b2 + d2 ) là số chẵn.

Do đó a + b + c + d là số chẵn

Mà a + b + c + d > 2 (Do a, b, c, d thuộc N*) a + b + c + d là hợp số.