Cho góc xOy nhỏ hơn 180 và một điểm M nằm trong góc đó. Qua M hãy dựng đường thẳng cắt các tia Ox, Oy tại A,B sao cho diện tích tam giác OAB nhỏ nhất?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Vì ĐT cần tìm đi qua $M(1,4)$ nên PTĐT có dạng:
$a(x-1)+b(y-4)=0\Leftrightarrow ax+by-(a+4b)=0(d)$ với $a^2+b^2\neq 0$
$A\in Ox\Rightarrow y_A=0$
$A\in (d)\Rightarrow ax_A+by_A-(a+4b)=0$
$\Leftrightarrow ax_A-(a+4b)=0\Rightarrow x_A=\frac{a+4b}{a}$
$B\in Oy\Rightarrow x_B=0$
$B\in (d)\Rightarrow ax_B+by_B-(a+4b)=0$
$\Leftrightarrow by_B-(a+4b)=0\Rightarrow y_B=\frac{a+4b}{b}$
Diện tích tam giác $ABC$:
$\frac{OB.OA}{2}=\frac{|y_B|.|x_A|}{2}=|\frac{(a+4b)^2}{ab}|\geq |\frac{(2\sqrt{4ab})^2}{ab}|=16$
Vậy $S_{OAB}$ min $=16$. Giá trị này đạt tại $a=4b$
Thay vào PTĐT $(d)$:
$4bx+by-(4b+4b)=0$
$\Leftrightarrow b(4x+y-8)=0$. Do $a=4b$ và $a^2+b^2\neq 0$ nên $b\neq 0$
$\Rightarrow 4x+y-8=0$
Đây chính là PTĐT cần tìm.
Mình chưa hiểu lắm dấu = thứ 2 ở dòng dưới cái dòng diện tích tam giác ABC ạ, bạn giải thích dùm mình với
ta kẻ tia OP
vì OB//AP \(\Rightarrow\)góc AOB=OPB (slt)
góc BOP=ABO (slt)
xét 2 tam giác OAB và OBP
OP chung
AOP=OBP (cmt)
BOP=ABO (cmt)
vậy t.g OAB=OBP (g.c.g)
suy ra OA-=BP, OB=AP (2 cạnh tương ứng)
ta có OA//PB suy ra OAB=APB
xét 2 t.g OAI và IPB
OA=PB (cmt_
OAI=IBP
AOI=IPB
vậy 2 t.g OAI=IPB
vậy AI=IB
IO=IP
suy ra 2 đoạn thẳng cắt nhau tai trung điểm I của mỗi đoạn