K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2018

a, \(\Delta OIN=\Delta OIP\left(g.c.g\right)\Rightarrow IN=IP\) ( 2 cạnh tương ứng)

Mà \(Ot\perp NP\)nên N và P đối xứng với nhau qua trục Ot.

b, Xét tứ giác ONMP có:  I là trung điểm của NP (gt)

                                      I là trung điểm của OM (gt)

\(\Rightarrow ONMP\)là hình bình hành.

Mà 2 đường chéo OM và NP vuông góc với nhau

\(\Rightarrow ONMP\)là hình thoi.

c, \(\widehat{xOy}=90^0\Rightarrow ONMP\) là hình vuông.

Chúc bạn học tốt.

      

1. Cho hình thoi ABCD có số đo góc A bằng 1200. Gọi O là giao điểm của hai đường chéo AC và BD. Trên tia BC lấy điểm M sao cho  BM=4/3BC. Đường thẳng AM cắt CD tại N. Trên các đoạn thẳng AB, AD lần lượt lấy các điểm E, F sao cho CE//NF. Tính số đo góc EOF2. Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ...
Đọc tiếp

1. Cho hình thoi ABCD có số đo góc A bằng 1200. Gọi O là giao điểm của hai đường chéo AC và BD. Trên tia BC lấy điểm M sao cho  BM=4/3BC. Đường thẳng AM cắt CD tại N. Trên các đoạn thẳng AB, AD lần lượt lấy các điểm E, F sao cho CE//NF. Tính số đo góc EOF

2. Cho điểm D thay đổi trên cạnh BC của tam giác nhọn ABC (D khác B và C). Từ D kẻ đường thẳng song song với AB cắt cạnh AC tại điểm N. Cũng từ D kẻ đường thẳng song song với AC cắt cạnh AB tại điểm M. Tìm vị trí của D để đoạn thẳng MN có độ dài nhỏ nhất.

3.. ABCD là hình chữ nhật có AB //CD, AB = 2CB. Từ A kẻ đường thẳng vuông góc với đường chéo BD tại H. Trên HB lấy điểm K sao cho HK = HA. Từ K kẻ đường thẳng song song với AH cắt AB tại E. Lấy M trung điểm DE, tia AM cắt DB tại N, cắt DC tại P.

Tính tỷ số diện tích tam giác AND với diện tam giác PMD?

 

0
3 tháng 3 2022

a. Xét tam giác AHO và tam giác BKO, có:

\(\widehat{BKO}=\widehat{AHO}=90^0\)

\(\widehat{O}:chung\)

Vậy tam giác AHO đồng dạng tam giác BKO ( g.g )

b.Xét tam giác EAK và tam giác EBH, có:

\(\widehat{AEK}=\widehat{BEH}\) ( đối đỉnh )

\(\widehat{AKE}=\widehat{BHE}=90^0\)

Vậy tam giác EAK đồng dạng tam giác EBH ( g.g )

\(\Rightarrow\dfrac{EK}{EH}=\dfrac{EA}{EB}\)

\(\Rightarrow EK.EB=EA.EH\)

c.Áp dụng định lý pitago vào tam giác vuông OAH, có:

\(OA^2=OH^2+AH^2\)

\(\Rightarrow AH=\sqrt{OA^2-OH^2}=\sqrt{5^2-3^2}=\sqrt{16}=4cm\)

Ta có: tam giác AHO đồng dạng tam giác BKO

\(\Rightarrow\dfrac{OA}{OB}=\dfrac{AH}{BK}\)

\(\Leftrightarrow\dfrac{5}{4}=\dfrac{4}{BK}\)

\(\Leftrightarrow5BK=16\)

\(\Leftrightarrow BK=\dfrac{16}{5}cm\)

NV
3 tháng 3 2022

Đề bài sai ngay từ câu a, hai tam giác này đồng dạng chứ ko bằng nhau (chúng chỉ bằng nhau khi E nằm trên tia phân giác trong góc xOy)