MN giải giúp mik bài này với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(-1)+3+(-5)+7+...+x=600
<=>[(-1)+3]+[(-5)+7]+....+[(-x)-2]+x]=600
Ta có 2+ 2 + .... + 2 = 600
=> 1 + 1 + .... + 1 = 300
Số dấu ngoặc [] là : \(\frac{x-3}{4}\)+ 1
=> \(\frac{x-3}{4}\)+ 1 = 300
=> \(\frac{x-3}{4}\)= 299
=> x - 3 = 299 . 4 = 1199
Vậy x = 1199
# Học Tốt
Tk cho mình nhé !
a, Áp dụng định lý Ta-lét ta có:
\(\dfrac{AD}{DB}=\dfrac{AE}{EC}\Rightarrow\dfrac{4}{x}=\dfrac{5}{10}\Rightarrow x=4:\dfrac{1}{2}\Rightarrow x=8\)
Áp dụng hệ quả định lý Ta-lét ta có:
\(\dfrac{AE}{AC}=\dfrac{DE}{BC}\Rightarrow\dfrac{5}{15}=\dfrac{6}{y}\Rightarrow y=6:\dfrac{1}{3}\Rightarrow y=18\)
b, Áp dụng định lý phân giác ta có:
\(\dfrac{DB}{DC}=\dfrac{AB}{AC}\Rightarrow\dfrac{5}{6}=\dfrac{10}{x}\Rightarrow x=10:\dfrac{5}{6}\Rightarrow x=12\)
1. What did the people do when you were there
2. I visited Dalat with my parents.
3. What do you think of Tam?
4. The life in countryside is peaceful and more than I expected
1.What did the people do when you were there?
2.I visited Da Lat with my parents.
3.What do you think of Tam?
4.The life in the countryside is more peaceful than I expected.
Ta có \(\dfrac{1}{1.3}\)+\(\dfrac{1}{3.5}\)+\(\dfrac{1}{5.7}\)+...+\(\dfrac{1}{49.51}\)
=\(\dfrac{2}{2}\).(\(\dfrac{1}{1.3}\)+\(\dfrac{1}{3.5}\)+\(\dfrac{1}{5.7}\)+...+\(\dfrac{1}{49.51}\))
=\(\dfrac{1}{2}\).(\(\dfrac{2}{1.3}\)+\(\dfrac{2}{3.5}\)+\(\dfrac{2}{5.7}\)+...+\(\dfrac{2}{49.50}\))
=\(\dfrac{1}{2}\).(1-\(\dfrac{1}{3}\)+\(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{49}-\dfrac{1}{51}\))
=\(\dfrac{1}{2}\).(\(1-\dfrac{1}{51}\))
=\(\dfrac{1}{2}\).\(\dfrac{50}{51}\)
=\(\dfrac{25}{51}\)
Ta có: \(\dfrac{1}{1\cdot3}+\dfrac{1}{3\cdot5}+...+\dfrac{1}{49\cdot51}\)
\(=\dfrac{1}{2}\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{49\cdot51}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{49}-\dfrac{1}{51}\right)\)
\(=\dfrac{1}{2}\left(1-\dfrac{1}{51}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{50}{51}=\dfrac{25}{51}\)