Cho tam giác ABC vuông tại A có AH là đường cao.Biết HB=4cm,HC=9cm
a)Tính độ dài AH
b)Tính diện tích tam giác ABC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) Ta có: HB+HC=BC(H nằm giữa B và C)
nên BC=4+9=13(cm)
Xét ΔBAC có AH là đường cao ứng với cạnh CB(gt)
nên \(S_{ABC}=\dfrac{AH\cdot BC}{2}=\dfrac{6\cdot13}{2}=39\left(cm^2\right)\)
a) Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow AH^2=4\cdot9=36\)
hay AH=6(cm)
Vậy: Độ dài đường cao là AH=6cm
tự vẽ hình
ta có <HBA+<BAH= 90\(^0\)(vì tam giác ABH vg tại H)
Có <BAH+ <HAC= 90\(^0\)(vì tam giác ABC vg tại A)
=> <HBA=<HAC
Xét tam giác BAH và ACH
<BHA=<AHC\(\left(90^0\right)\)
<ABH=<HAC
=> Tam giác BAH đồng dạng với tam giác ACH
=> BH/AH=AH/CH=> AH^2= BH*CH=4*9=36 cm
b, ta có BC=BH+CH=4+9=13 cm
S(ABC) = AH*BC=36*13=468 cm\(^2\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AB^2=BH\cdot BC\)
\(\Leftrightarrow AB^2=4\cdot9=36\)
hay AB=6(cm)
Vậy: AB=6cm
a)Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow AH^2=4\cdot9=36\)
hay AH=6(cm)
Vậy: AH=6cm
đủ đề chưa bạn