Phân số nào bằng 1?
A. 99/99
B. 99/98
C. 98/99
D. 99/100
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi A là phân số thứ nhất, B là phân số thứ 2
\(\frac{A}{3}=\frac{3^{100}+1}{3^{100}+3}\)có phần bù là \(\frac{2}{3^{100}+3}\)
\(\frac{B}{3}=\frac{3^{99}+1}{3^{99}+3}\)có phần bù là \(\frac{2}{3^{99}+3}\)
ta thấy \(\frac{2}{3^{100}+3}< \frac{2}{3^{99}+3}\Rightarrow A>B\)
mink nghĩ vậy bạn ạ
\(B=\left(1+\frac{98}{2}\right)+\left(1+\frac{97}{3}\right)+...+\left(1+\frac{1}{99}\right)+1=\frac{100}{2}+\frac{100}{3}+...+\frac{100}{100}\)
\(\Rightarrow\frac{A}{B}=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}}{100\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\right)}=\frac{1}{100}\)
Bài 1:
a: \(2A=2^{101}+2^{100}+...+2^2+2\)
\(\Leftrightarrow A=2^{100}-1\)
b: \(3B=3^{101}+3^{100}+...+3^2+3\)
\(\Leftrightarrow2B=3^{100}-1\)
hay \(B=\dfrac{3^{100}-1}{2}\)
c: \(4C=4^{101}+4^{100}+...+4^2+4\)
\(\Leftrightarrow3C=4^{101}-1\)
hay \(C=\dfrac{4^{101}-1}{3}\)
\(7A=\dfrac{7^{100}+14}{7^{100}+2}=1+\dfrac{12}{7^{100}+2}\)
\(7B=\dfrac{7^{99}+14}{7^{99}+2}=1+\dfrac{12}{7^{99}+2}\)
7^100+2>7^99+2
=>7A<7B
=>A<B
Lời giải:
Xét tử số:
$101+100+99+98+...+3+2+1=(101+1).101:2=5151$
Xét mẫu số:
$101-100+99-98+...+3-2+1$
$=(101-100)+(99-98)+...+(3-2)+1=\underbrace{1+1+....+1}_{50} +1=1.50+1=51$
Vậy $A=\frac{5151}{51}=101$
A
A