Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2/
a/ \(\dfrac{7}{10}=\dfrac{7.15}{10.15}=\dfrac{105}{150}\)
\(\dfrac{11}{15}=\dfrac{11.10}{15.10}=\dfrac{110}{150}\)
-Vì \(\dfrac{105}{150}< \dfrac{110}{150}\)(105<110)nên \(\dfrac{7}{10}< \dfrac{11}{15}\)
b/ \(\dfrac{-1}{8}=\dfrac{-1.3}{8.3}=\dfrac{-3}{24}\)
-Vì \(\dfrac{-3}{24}>\dfrac{-5}{24}\left(-3>-5\right)\)nên\(\dfrac{-1}{8}>\dfrac{-5}{24}\)
c/\(\dfrac{25}{100}=\dfrac{25:25}{100:25}=\dfrac{1}{4}\)
\(\dfrac{10}{40}=\dfrac{10:10}{40:10}=\dfrac{1}{4}\)
-Vì \(\dfrac{1}{4}=\dfrac{1}{4}\)nên\(\dfrac{25}{100}=\dfrac{10}{40}\)
a/ \(\dfrac{7}{10}< \dfrac{11}{15}\)
c/ \(\dfrac{25}{100}=\dfrac{10}{40}\)
Đặt \(A=\dfrac{1}{7^2}+\dfrac{1}{7^3}+...+\dfrac{1}{7^{100}}\)
\(7A=\dfrac{1}{7}+\dfrac{1}{7^2}+...+\dfrac{1}{7^{99}}\)
\(\Rightarrow7A-A=\dfrac{1}{7}-\dfrac{1}{7^{100}}\)
\(\Rightarrow6A=\dfrac{1}{7}-\dfrac{1}{7^{100}}\)
\(\Rightarrow A=\dfrac{1}{6}\left(\dfrac{1}{7}-\dfrac{1}{7^{100}}\right)\)
\(7A=\dfrac{7^{100}+14}{7^{100}+2}=1+\dfrac{12}{7^{100}+2}\)
\(7B=\dfrac{7^{99}+14}{7^{99}+2}=1+\dfrac{12}{7^{99}+2}\)
7^100+2>7^99+2
=>7A<7B
=>A<B