K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2016

Ta có A = n2012 - n2 + n2002 - n + n2 + n + 1

= n2[(n3)670 - 1] + n[(n3)667 - 1] + (n2 + n + 1)

= (n3 - 1)X + (n- 1)Y + (n2 + n + 1)

= (n2 + n + 1)(X' + Y' + 1)

Với n = 1 thì A = 3

Với n > 1 thì A không phải là số nguyên tố do là tích của 2 số nhân với nhau

20 tháng 2 2019

tai sao n tu buoc 1 xuong buoc 3 duoc (n^3*1)X o dau ra

25 tháng 9 2017

Xét n=0 thì A=1 ko phải số nguyên tố;n=1 thì A=3 là số nguyên tố

Xét n>1:\(A=n^{2012}-n^2+n^{2002}-n+n^2+n+1\)

\(=n^2\left(\left(n^3\right)^{670}-1\right)+n\left(\left(n^3\right)^{667}-1\right)+\left(n^2+n+1\right)\)

Mà \(\left(\left(n^3\right)^{670}-1\right)\)chia hết cho \(n^3-1\)

\(\Rightarrow\left(\left(n^3\right)^{670}-1\right)\)chia hết cho \(n^2+n+1\)

Tương tự \(\left(\left(n^3\right)^{667}\right)\)chia hết cho \(n^2+n+1\)

Vậy A chia hết cho \(n^2+n+1>1\)nên A là hợp số.Vậy \(n=1\)

22 tháng 11 2017

Xét n=0 thì A=1 ko phải số nguyên tố;n=1 thì A=3 là số nguyên tố

Xét n>1:A=n2012−n2+n2002−n+n2+n+1

=n2((n3)670−1)+n((n3)667−1)+(n2+n+1)

Mà ((n3)670−1)chia hết cho n3−1

⇒((n3)670−1)chia hết cho n2+n+1

Tương tự ((n3)667)chia hết cho n2+n+1

A chia hết cho n2+n+1>1nên A là hợp số.Vậy n=1
 

13 tháng 12 2020

undefined

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp sốBài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhấtBài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ướcBài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng...
Đọc tiếp

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002 
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố

Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p

2
4 tháng 8 2017

K MIK NHA BN !!!!!!

B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1 
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1 

* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số 

* xét p nguyên tố khác 3 => 8p không chia hết cho 3 
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3 
=> (8p-1)(8p+1) chia hết cho 3 

Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số  

B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1) 
* Xét k = 1 
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2) 
* Xét k lẻ mà k > 1 
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn 
=> k + 1 là hợp số 
=> Dãy số không có nhiều hơn 2 số nguyên tố (3) 
* Xét k chẵn , khi đó k >= 2 
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn 
=> k + 2 và k + 10 là hợp số 
=> Dãy số không có nhiều hơn 1 số nguyên tố (4) 
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất

B3:Số 36=(2^2).(3^2)

Số này có 9 ước là:1;2;3;4;6;9;12;18;36

Số tự nhiên nhỏ nhất có 6 ước là số 12.

Cho tập hợp ước của 12 là B.

B={1;2;3;4;6;12}

K MIK NHA BN !!!!!!

4 tháng 8 2017

cảm ơn bạn nha

mình k cho ban roi do

1 tháng 2 2021

bạn fuck boy hơi gấu đó