Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét n=0 thì A=1 ko phải số nguyên tố;n=1 thì A=3 là số nguyên tố
Xét n>1:\(A=n^{2012}-n^2+n^{2002}-n+n^2+n+1\)
\(=n^2\left(\left(n^3\right)^{670}-1\right)+n\left(\left(n^3\right)^{667}-1\right)+\left(n^2+n+1\right)\)
Mà \(\left(\left(n^3\right)^{670}-1\right)\)chia hết cho \(n^3-1\)
\(\Rightarrow\left(\left(n^3\right)^{670}-1\right)\)chia hết cho \(n^2+n+1\)
Tương tự \(\left(\left(n^3\right)^{667}\right)\)chia hết cho \(n^2+n+1\)
Vậy A chia hết cho \(n^2+n+1>1\)nên A là hợp số.Vậy \(n=1\)
Xét n=0 thì A=1 ko phải số nguyên tố;n=1 thì A=3 là số nguyên tố
Xét n>1:A=n2012−n2+n2002−n+n2+n+1
=n2((n3)670−1)+n((n3)667−1)+(n2+n+1)
Mà ((n3)670−1)chia hết cho n3−1
⇒((n3)670−1)chia hết cho n2+n+1
Tương tự ((n3)667)chia hết cho n2+n+1
A chia hết cho n2+n+1>1nên A là hợp số.Vậy n=1
Ta có A = n2012 - n2 + n2002 - n + n2 + n + 1
= n2[(n3)670 - 1] + n[(n3)667 - 1] + (n2 + n + 1)
= (n3 - 1)X + (n3 - 1)Y + (n2 + n + 1)
= (n2 + n + 1)(X' + Y' + 1)
Với n = 1 thì A = 3
Với n > 1 thì A không phải là số nguyên tố do là tích của 2 số nhân với nhau