Ai giúp mình bài 6 7 8 9 với, mình đang cần gấp ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.2^{32}}\)
Ta lấy vễ trên chia vế dưới
\(=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}\)
Ta lấy vế trên chia vế dưới
\(=2^3.3=24\)
\(\dfrac{9^{15}.8^{11}}{3^{29}.16^8}=\dfrac{\left(3^2\right)^{15}.\left(2^3\right)^{11}}{3^{29}.\left(2^4\right)^8}=\dfrac{3^{30}.2^{33}}{3^{29}.3^{32}}=3.2=6\)
\(\dfrac{2^{11}.9^3}{3^5.16^2}=\dfrac{2^{11}.\left(3^2\right)^3}{3^5.\left(2^4\right)^2}=\dfrac{2^{11}.3^6}{3^5.2^8}=2^3.3=8.3=24\)
\(A=\frac{\left[\left(25-1\right):1+1\right]\left(25+1\right)}{2}=325.\)
\(B=\frac{\left[\left(51-3\right):2+1\right]\left(51+3\right)}{2}=675\)
\(C=\frac{\left[\left(81-1\right):4+1\right]\left(81+1\right)}{2}=861\)
TL
S= ( 1+ 3+ 3^2+ 3^3+ 3^4+ 3^5+ 3^6+ 3^7+ 3^8+ 3^9)
3.S=3.( 1+ 3+ 3^2+ 3^3+ 3^4+ 3^5+ 3^6+ 3^7+ 3^8+ 3^9)
3S=3+3^2+3^3+....+3^10
3S-S=3+3^2+3^3+....+3^10-(1+ 3+ 3^2+ 3^3+ 3^4+ 3^5+ 3^6+ 3^7+ 3^8+ 3^9)
2S=3^10-1
S=3^10-1/2
HỌC TỐT NHÉ
\(7-y:2=3\)
\(y:2=7-3\)
\(y:2=4\)
\(y=4.2\)
\(y=8\)
Bài 1:
a, \(\)\(\)\(=>R2//\left[R4nt\left(R3//R5\right)\right]\)
\(=>Rtd=\dfrac{R2\left[R4+\dfrac{R3.R5}{R3+R5}\right]}{R2+R4+\dfrac{R3.R5}{R3+R5}}=\dfrac{1.\left[1+\dfrac{1}{1+1}\right]}{1+1+\dfrac{1}{1+1}}=0,6\left(ôm\right)\)
\(=>I=\dfrac{Uab}{Rtd}=\dfrac{10}{0,6}=\dfrac{50}{3}A=I1\)
\(=>Uab=U2345=10V=U2=U345\)
\(=>I2=\dfrac{U2}{R2}=\dfrac{10}{1}=10A\)
\(=>I345=\dfrac{U345}{R345}=\dfrac{10}{1+\dfrac{1.1}{1+1}}=\dfrac{20}{3}A=I4=I35\)
\(=>U35=I35.R35=\dfrac{20}{3}.\dfrac{1.1}{1+1}=\dfrac{10}{3}V=U3=U5\)
\(=>I3=\dfrac{U3}{R3}=\dfrac{\dfrac{10}{3}}{1}=\dfrac{10}{3}A,\)
\(=>I5=\dfrac{U5}{R5}=\dfrac{10}{3}A\)
b, \(I1=0,1A=Im=I2345\)
\(=>Uab=I2345.R2345=0,1.\dfrac{6\left[8+\dfrac{6.12}{6+12}\right]}{6+8+\dfrac{6.12}{6+12}}=0,4V\)
\(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+...+\dfrac{19}{9^2.10^2}\)
=\(\dfrac{3}{1.4}+\dfrac{5}{4.9}+...+\dfrac{19}{81.100}\)
=\(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{9}+...+\dfrac{1}{81}-\dfrac{1}{100}\)
=\(1-\dfrac{1}{100}=\dfrac{99}{100}\)
Mà \(\dfrac{99}{100}< 1\) nên \(\dfrac{3}{1^2.2^2}+\dfrac{5}{2^2.3^2}+...+\dfrac{19}{9^2.10^2}< 1\)
Bài 3:
a. \(R=R1+R2=15+30=45\Omega\)
b. \(\left\{{}\begin{matrix}I=U:R=9:45=0,2A\\I=I1=I2=0,2A\left(R1ntR2\right)\end{matrix}\right.\)
c. \(\left\{{}\begin{matrix}U1=R1.I1=15.0,2=3V\\U2=R2.I2=30.0,2=6V\end{matrix}\right.\)
Bài 4:
\(I1=U1:R1=6:3=2A\)
\(\Rightarrow I=I1=I2=2A\left(R1ntR2\right)\)
\(U=R.I=\left(3+15\right).2=36V\)
\(U2=R2.I2=15.2=30V\)
thôi ngay trò spam nếu ko muốn bay acc