cho m,n thuộc N, m chia hết cho 3 dư 1, n chia hết cho 3 dư 2. chứng minh m,n chia hết cho 3 dư 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có a=5k+3
Nên a2= (5k+3)2=25k2+30k+9=25k2+30k+5+4=5(5k2+6k+1)+4 chia cho 5 dư 4 (dpcm)
đề sai bn nhé
Phải là Cho n thuộc N CMR n^2 chia hết cho 3 hoặc n^2 chia 3 dư 1
Đơn giản thôi:
Xét n=3k=> n^2=9k^2 chia hết cho 3
Xét n=3q+1=> n^2=9q^2+6q+1 chia 3 dư 1 do 9q^2 và 6q chia hết cho 3 và 1 chia 3 dư 1
Xét n=3p+2 => n^2=9p^2+6p+4 chia 3 dư 1 do 9p^2 và 6p chia hết cho 3 và 4 chia 3 dư 1
Vậy với mọi n thuộc N thì n^2 chia 3 dư 0 hoặc 1.
b) Có mn(m^2-n^2)
=mn(m-n)(m+n)
Nếu m hoặc n chia hết cho 3 thì xong luôn
Nếu m và n cùng dư khi chia cho 3 thì m-n chia hết cho 3
Nếu m và n khác dư khi chia cho 3 (lúc đó m,n ko chia hết cho 3) thì m+n chia hết cho 3
Vậy với mọi m,n thuộc N thì mn(m^2-n^2) chia hết cho 3
m thuộc N và ko chia hết cho 3 => m có dạng 3k+1 hoặc 3k+2. Ta có :
M=3k+1 => m^2 = (3k+1)^2= 9k +1 chia 3 dư 1 (1)
M = 3k +2 => m^2 = (3k+2)^2= 9k +4 chia 3 dư 1 (2)
Từ (1) và (2) ta suy ra m^2 chia 3 dư 1 (ĐPCM)
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
sao lại m chia hết cho 3 dư 1 ? vừa chia hết lại vừa có dư là sao ? -__- xem lại đề đj
m chia het cho 3 du1 dat la x
n chia het cho3 du ?
nhan ra di