K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2015

m thuộc N và ko chia hết cho 3 => m có dạng 3k+1 hoặc 3k+2. Ta có :

M=3k+1 => m^2 = (3k+1)^2= 9k +1 chia 3 dư 1             (1)

M = 3k +2 => m^2 = (3k+2)^2= 9k +4 chia 3 dư 1             (2)

Từ (1) và (2) ta suy ra m^2 chia 3 dư 1 (ĐPCM)

31 tháng 3 2015

4

8 tháng 10 2017

Bài 45 :

a ) Theo bài ra ta có :

a = 9.k + 6

a = 3.3.k + 3.2

\(\Rightarrow a⋮3\)

b ) Theo bài ra ta có :

a = 12.k + 9 

a = 3.4.k + 3.3

\(\Rightarrow a⋮3\)

Vì : \(a⋮3\Rightarrow a⋮6\)

c ) Ta thấy :

30 x 31 x 32 x ...... x 40 + 111

= 37 x 30 x ....... x 40 + 37 x 3

\(\Rightarrow\left(30.31.32......40+111\right)⋮37\)

Bài 46 :

a ) số thứ nhất là n số thứ 2 là n+1 
tích của chúng là 
n(n+1) 
nếu n = 2k ( tức n là số chẵn) 
tích của chúng là 
2k.(2k+1) thì rõ rảng số này chia hết cho 2 nên là sỗ chẵn
nếu n = 2k +1 ( tức n là số lẻ)
tích của chúng là 
(2k+1)(2k+1+1) = (2k+1)(2k+2) = 2.(2k+1)(k+1) số này cũng chia hết cho 2 nên là số chẵn 

Mà đã là số chẵn thì luôn chia hết cho 2 nên tích 2 stn liên tiếp luôn chia hết cho 2

b ) Nếu n là số lẻ thì : n + 3 là số chẵn 

Mà : số lẻ nhân với số chẵn thì sẽ luôn chia hết cho 2

Nếu n là số chẵn thì :

n . ( n + 3 ) luôn chi hết cho 2 

c ) Vì n ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên có chữ số tận cùng là : 0 ; 2 ; 4 ; 6 

Do đó n(n + 1 ) + 1 có tận cùng là : 1 ; 3 ; 7

Vì 1 ; 3 ; 7 không chia hết cho 2 

Vậy n2 + n + 1 không chia hết cho 2 

a, Gói 5 số tự nhiên liên tiếp là a,á+1,a+2.a+3.a+4(a thuộc N)

+Nếu a chia hết cho 5 , bài toán giải xong

+ Nếu a chia 5 dư 1, đặt a=5b+1(b thuộc N ) ta có a+4=5b+1+4=(5b+5) chia hết cho 5

+ Nếu a chia 5 dư 2, đặt a=5c+2 (c thuộc N) ta có a+3=5c+2+3=(5c+5) chia hết cho 5

+ Nếu a chia 5 dư 3 , đặt a=5d+3(d thuộc N) ta có a+2=5đ +3+2=(5d+5) chia hết cho5

+ Nếu a chia 5 dư 3, đặt a= 5e +4 ( e thuốc N ) ta có  a+1=5e+4+1=(5e+5) chia hết cho 5

Vậy trong 5 số tự nhiên liên tiếp, có một số chia hết  cho 5

b, 19 m+19m+1,19m+2,19m+3,19m+4 là 5 số tự nhiên liên tiếp nên theo câu a có 1 số chia hết cho 5 ma 19m ko chia hết cho 5 với mọi m thuộc N 

do đó : 19m+1,19m+2,19m+3,19m+4 có 1 số chia hết cho 5

=>(19m+1);(19m+2) (19m+3), (19m+4) chia hết cho 5

28 tháng 12 2016

bài này mình chụi

12 tháng 8 2015

mk thích cái hình này

25 tháng 10 2018

Bài 4:

Ta có:

M=1+7+72+...+781

M=(1+7+72+73)+(74+75+76+77)+...+(778+779+780+781)

M=(1+7+72+73)+74.(1+7+72+73)+...+778.(1+7+72+73)

M=400+74.400+...+778.400

M=400.(1+74+...+778)

\(\Rightarrow\)M=......0

Vậy chữ số tận cùng của M là chữ số 0

Bài 5:

a)Ta có:

M=1+2+22+...+2206

M=(1+2+22)+(23+24+25)+...+(2204+2205+2206)

M=(1+2+22)+23.(1+2+22)+...+2204.(1+2+22)

M=7+23.7+...+2204.7

M=7.(1+23+...+2204)\(⋮\)7

Vậy M chia hết cho 7

c)Câu này đề có phải là M+1=2x ko?Nếu đúng thì giải như zầy nè:

Ta có:

      M=1+2+22+...+2206

     2M=2+22+23+...+2207

 2M-M=(2+22+23+...+2207)-(1+2+22+...+2206)

       M=2+22+23+...+2207-1-2-22-...-2206

\(\Rightarrow\)M=2207-1

M+1=2207-1+1

M+1=2207

Ta có:

M+1=2x

2x=M+1

2x=2207

x=2207:2

x=\(\frac{2^{207}}{2}\)

Bài 6:

Ta có:

A=(1+3+32)+(33+34+35)+...+(357+358+359)

A=(1+3+32)+33.(1+3+32)+...+357.(1+3+32)

A=13+33.13+...+357.13

A=13.(1+33+..+357)\(⋮\)13

Vậy A chia hết cho 13

mk chỉ biết giải dc từng nấy câu thui. thông cảm cho mk nha