tính giá trị nhỏ nhất
a) /x+13/ +64
b) /x+3/ + /x+5/
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(b,B\left(x\right)=x\left(x-3\right)-2\left(x+5\right)=x^2-3x-2x-10=x^2-5x-10\)
\(=x^2-\frac{5}{2}x-\frac{5}{2}x+\frac{25}{4}-\frac{25}{4}-10=x\left(x-\frac{5}{2}\right)-\frac{5}{2}\left(x-\frac{5}{2}\right)-\frac{65}{4}\)
\(=\left(x-\frac{5}{2}\right)^2-\frac{65}{4}\)
Vì \(\left(x-\frac{5}{2}\right)^2\ge0=>\left(x-\frac{5}{2}\right)^2-\frac{65}{4}\ge-\frac{65}{4}\) (với mọi x)
Dấu "=" xảy ra \(< =>x-\frac{5}{2}=0< =>x=\frac{5}{2}\)
Vậy minB(x)=-65/4 khi x=5/2
\(c,C\left(x\right)=2x\left(x+1\right)-3x\left(x+1\right)=2x^2+2x-3x^2-3x=-x^2-x\)
\(=-\left(x^2+x\right)=-\left(x^2+x+1-1\right)=-\left(x^2+\frac{1}{2}x+\frac{1}{2}x+\frac{1}{4}+\frac{3}{4}-1\right)\)
\(=-\left[x\left(x+\frac{1}{2}\right)+\frac{1}{2}\left(x+\frac{1}{2}\right)-\frac{1}{4}\right]=-\left[\left(x+\frac{1}{2}\right)^2-\frac{1}{4}\right]=\frac{1}{4}-\left(x+\frac{1}{2}\right)^2\)
Vì \(\left(x+\frac{1}{2}\right)^2\ge0=>\frac{1}{4}-\left(x+\frac{1}{2}\right)^2\le\frac{1}{4}\) (với mọi x)
Dấu "=" xảy ra \(< =>x+\frac{1}{2}=0< =>x=-\frac{1}{2}\)
Vậy maxC(x)=1/4 khi x=-1/2
\(A\left(x\right)=2x\left(x-1\right)-3\left(x-13\right)=2x^2-5x+39\)
\(=2\left(x^2-\frac{5}{2}x+\frac{39}{2}\right)=2\left(x^2-\frac{5}{4}x-\frac{5}{4}x+\frac{25}{16}-\frac{25}{16}+\frac{39}{2}\right)\)
\(=2\left[x\left(x-\frac{5}{4}\right)-\frac{5}{4}\left(x-\frac{5}{4}\right)\right]+\frac{287}{16}=2\left[\left(x-\frac{5}{4}\right)^2+\frac{287}{16}\right]=2\left(x-\frac{5}{4}\right)^2+\frac{287}{8}\)
Vì \(2\left(x-\frac{5}{4}\right)^2\ge0=>2\left(x-\frac{5}{4}\right)^2+\frac{287}{8}\ge\frac{287}{8}>0\) với mọi x
=>A(x) vô nghiệm (đpcm)
- |x-3|=12
<=> - |x-3|-12=0
|x-3|>=0
- |x-3|<=0
=>- |x-3|-12<=-12
dấu "=" xảy ra khi x=3
ý 2 làm tương tự
a) \(P=-\left|x-3\right|=12\)
\(P=-\left|x-3\right|-12=0\)
Vì: \(-\left|x-3\right|\le0\forall x\)
\(\Rightarrow-\left|x-3\right|-12\le-12\forall x\)
\(\Leftrightarrow P_{max}=-12\Leftrightarrow-\left|x-3\right|=0\Leftrightarrow x=3\)
b) \(A=\left|x+13\right|+64\)
Vì: \(\left|x+13\right|\ge0\forall x\)
\(\Rightarrow\left|x+13\right|+64\ge64\forall x\)
\(\Leftrightarrow A_{min}=64\Leftrightarrow\left|x+13\right|=0\Leftrightarrow x=-13\)
Ta có: \(A=\left|x-1\right|+\left|x-2\right|+\left|x-3\right|+\left|4-x\right|+\left|5-x\right|\ge x-1+x-2+0+4-x+5-x=6\).
Đẳng thức xảy ra khi x = 3.
Vậy Min A = 6 khi x = 3.
a: Ta có: \(A=\left(x-1\right)\left(x-3\right)+11\)
\(=x^2-4x+3+11\)
\(=x^2-4x+4+8\)
\(=\left(x-2\right)^2+8\ge8\forall x\)
Dấu '=' xảy ra khi x=2
b: Ta có: \(B=-4x^2+4x+5\)
\(=-\left(4x^2-4x+1-6\right)\)
\(=-\left(2x-1\right)^2+6\le6\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
a) Giá trị tuyệt đối luôn nhỏ nhất bằng 0
=> Ta có: x+13=0
=>x=0-13
=>x=-13
=> Giá trị nhỏ nhất là 64 khi x= -13
=> Ta có : x= -13
b) Ta cho x=-5 để vế sau bằng 0 và vế trước bằng 2
=> Giá trị nhỏ nhất là 2 khi x=5
a) Giá trị tuyệt đối luôn nhỏ nhất bằng 0
=> Ta có: x+13=0
=>x=0-13
=>x=-13
=> Giá trị nhỏ nhất là 64 khi x= -13
=> Ta có : x= -13
b) Ta cho x=-5 để vế sau bằng 0 và vế trước bằng 2
=> Giá trị nhỏ nhất là 2 khi x=5