K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Giá trị tuyệt đối luôn nhỏ nhất bằng 0

=> Ta có: x+13=0

=>x=0-13

=>x=-13

=> Giá trị nhỏ nhất là 64 khi x= -13

=> Ta có : x= -13

b) Ta cho x=-5 để vế sau bằng 0 và vế trước bằng 2

=> Giá trị nhỏ nhất là 2 khi x=5

a) Giá trị tuyệt đối luôn nhỏ nhất bằng 0

=> Ta có: x+13=0

=>x=0-13

=>x=-13

=> Giá trị nhỏ nhất là 64 khi x= -13

=> Ta có : x= -13

b) Ta cho x=-5 để vế sau bằng 0 và vế trước bằng 2

=> Giá trị nhỏ nhất là 2 khi x=5

15 tháng 9 2016

 - |x-3|=12

<=> - |x-3|-12=0

|x-3|>=0

- |x-3|<=0

=>- |x-3|-12<=-12

dấu "=" xảy ra khi x=3

ý 2 làm tương tự

23 tháng 12 2020

a) \(P=-\left|x-3\right|=12\)

\(P=-\left|x-3\right|-12=0\)

Vì: \(-\left|x-3\right|\le0\forall x\)

\(\Rightarrow-\left|x-3\right|-12\le-12\forall x\)

\(\Leftrightarrow P_{max}=-12\Leftrightarrow-\left|x-3\right|=0\Leftrightarrow x=3\)

b) \(A=\left|x+13\right|+64\)

Vì: \(\left|x+13\right|\ge0\forall x\)

\(\Rightarrow\left|x+13\right|+64\ge64\forall x\)

\(\Leftrightarrow A_{min}=64\Leftrightarrow\left|x+13\right|=0\Leftrightarrow x=-13\)

a: Ta có: \(A=\left(x-1\right)\left(x-3\right)+11\)

\(=x^2-4x+3+11\)

\(=x^2-4x+4+8\)

\(=\left(x-2\right)^2+8\ge8\forall x\)

Dấu '=' xảy ra khi x=2

b: Ta có: \(B=-4x^2+4x+5\)

\(=-\left(4x^2-4x+1-6\right)\)

\(=-\left(2x-1\right)^2+6\le6\forall x\)

Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)

30 tháng 6 2021

\(1.\)

\(-17-\left(x-3\right)^2\)

Ta có: \(\left(x-3\right)^2\ge0\)với \(\forall x\)

\(\Leftrightarrow-\left(x-3\right)^2\le0\)với \(\forall x\)

\(\Leftrightarrow17-\left(x-3\right)^2\le17\)với \(\forall x\)

Dấu '' = '' xảy ra khi: 

\(\left(x-3\right)^2=0\)

\(\Leftrightarrow x-3=0\)

\(\Leftrightarrow x=3\)

Vậy \(Max=-17\)khi \(x=3\)

30 tháng 6 2021

\(2.\)

\(A=x\left(x+1\right)+\frac{3}{2}\)

\(A=x^2+x+\frac{3}{2}\)

\(A=\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\)

\(\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

\(\Leftrightarrow\left(x+\frac{1}{2}\right)^2+\frac{5}{4}\ge\frac{5}{4}\)với \(\forall x\)

Vậy \(Max=\frac{5}{4}\)khi \(x=\frac{-1}{2}\)

5 tháng 2 2021

1, Ta có: 3-x2+2x=-(x2-2x+1)+4=-(x-1)2+4

vì (x-1)2 luôn lớn hơn hoặc bằng không với mọi x-->-(x-1)nhỏ hơn hoặc bằng 0 với mọi x

vậy giá trị lớn nhất của biểu thức 3-x2+2x là 4

5 tháng 2 2021

các bài giá trị  nhỏ nhất còn lại làm tương tự bạn nhé

chỉ cần đưa về nhân tử chung hoặc hằng đẳng thức là được

13 tháng 9 2016

\(\left|x+3\right|+\left|x+5\right|\)

\(=>\left|x+3\right|;\left|x+5\right|\ge0\)

\(3+5=8\)

\(=>\left|x+3\right|+\left|x+5\right|\ge8\)

\(=>\left|x+3\right|+\left|x+5\right|=8\)

Tự tìm x nhá

Vậy GTNN của | x + 3 | + | x + 5 | = 8 khi x = ...... 

13 tháng 9 2016

|x+3|+|x+5|>=|x+3-x+5|

                >=8

      Min(bt)=8 với mọi x

11 tháng 9 2016

Bài 1:

\(M=\left|x+13\right|+64\)

Vì \(\left|x+3\right|\ge0\)

=> \(\left|x+3\right|+64\ge64\)

Vậy GTNN của M là 64 khi x=-13

\(A=\left|x+3\right|+\left|x+5\right|=\left|-\left(x+3\right)\right|+\left|x+5\right|\)

Áp dụng bđt \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có:

\(A\ge\left|-x-3+x+5\right|=2\)

Vaayj GTNN của A là 2 khi \(-3\le x\le5\)

Bài 2:

a) \(\left(x+10\right)^2=0\)

\(\Leftrightarrow x+10=0\Leftrightarrow x=-10\)

b) \(\left(x-\sqrt{121}\right)\left(x^2+1\right)=0\)

\(\Leftrightarrow x-\sqrt{121}=0\) (vì \(x^2+1>0\) )

\(\Leftrightarrow x=11\)

11 tháng 9 2016

Bài 1:

a)Ta thấy: \(\left|x+13\right|\ge0\)

\(\Rightarrow\left|x+13\right|+64\ge64\)

\(\Rightarrow M\ge64\)

Dấu = khi x=-13

b)\(\left|x+3\right|+\left|x+5\right|=\left|x+3\right|+\left|-x-5\right|\)

Áp dụng Bđt \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(\left|x+3\right|+\left|-x-5\right|\ge\left|x+3+\left(-x\right)-5\right|=2\)

\(\Rightarrow A\ge2\)

Dấu = khi \(\left(x+3\right)\left(x+5\right)\ge0\)\(\Rightarrow3\le x\le5\)

\(\Rightarrow\begin{cases}\left(x+3\right)\left(x+5\right)=0\\3\le x\le5\end{cases}\)\(\Rightarrow\)\(\begin{cases}x=-3\\x=-5\end{cases}\)

Vậy MinA=2 khi \(\begin{cases}x=-3\\x=-5\end{cases}\)