Tìm hai số tự nhiên nhỏ hơn 200 biết hiệu của chúng là 90 và ước chung lớn nhất là 15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi hai số đó là a và b (a > b)
Ta có ƯCLN(a; b) = 15
=> a = 15m và b = 15n (m > n; m,n nguyên tố cùng nhau (1))
Do đó a - b = 15m - 15n = 15.(m - n) = 90
=> m - n = 6 (2)
Do b < a < 200 nên n < m < 13. (3)
Từ (1) ; (2) ; (3) => (m; n) ∈ {(7; 1) ; (11; 5)}
=> (a; b) ∈ {(105; 15) ; (165; 75)}
Gọi 2 số đó là a và b ( a>b)
Ta có UCLN ( a;b ) = 15
=> a=15m ; b=15n ( m>n ; m;n là 2 số nguyên tố cũng nhau (1))
Do đó a-b=15m-15n=15(m-n)=90
=> m-n=6(2)
Do b<a<200 nên n<m<13(3)
Từ (1);(2);(3)=>(m;n)=(7;1) và ( 11;5)
=> a;b thuộc ( 105;15) và ( 165;75)
gọi 2 số đó là a và b
vì ƯCLN(a,b)=15
suy ra a=15m
b=15n
suy ra a-b=15m-15n
suy ra a-b=15(m-n)=90
suy ra m-n=6
còn lại chỉ cần tìm số m và n rồi a và b sao cho (m,n)=1
THẤY ĐÚNG THÌ K CHO MK NHA
Gọi hai số đó là a và b (a>b)
Ta có ƯCLN(a,b)= 15
\(\Rightarrow\)a=15m và b=15n (m>n; m và n là 2 số nguyên tố cùng nhau(1))
Do đó a-b= 15m-15n = 15(m-n)= 90
\(\Rightarrow\)m-n=6 (2)
\(\Rightarrow\)Do đó b<a<200 nên n<m<13 (3)
Từ (1); (2); (3) \(\Rightarrow\)(m;n) \(\in\){(7;1); (11;5)}
\(\Rightarrow\)(a;b) \(\in\){(105;15); (165;75)}
Gọi hai số đó là a và b (a > b)
Ta có ƯCLN(a; b) = 15
=> a = 15m và b = 15n (m > n; m,n nguyên tố cùng nhau (1))
Do đó a - b = 15m - 15n = 15.(m - n) = 90
=> m - n = 6 (2)
Do b < a < 200 nên n < m < 13. (3)
Từ (1) ; (2) ; (3) => (m; n) ∈ {(7; 1) ; (11; 5)}
=> (a; b) ∈ {(105; 15) ; (165; 75)
Gọi hai số đó là a và b (a > b)
Ta có: \(ƯCLN\left(a;b\right)=15\)
\(\Rightarrow\) \(a=15m\) và \(b=15n\) (\(m>n;m,n\) nguyên tố cùng nhau (1))
Do đó: \(a-b=15m-15n=15.\left(m-n\right)=90\)
\(\Rightarrow\) \(m-n=6\)(2)
Do: \(b< a< 200\) nên \(n< m< 13\). (3)
Từ (1) ; (2) ; (3) => \(\left(m;n\right)\in\left\{\left(7;1\right);\left(11;5\right)\right\}\)
\(\Rightarrow\) \(\left(a;b\right)\in\left\{\left(105;15\right);\left(165;75\right)\right\}\)
Gọi hai số đó là a , b ( với a > b )
Theo đề bài ta có : UCLN ( a ; b ) là 15
=> a = 15m và b = 15n ( m > n , m ; n là số nguyên tố cùng nhau ( 1 )
Do đó : a - b = 15m - 15n = 15 ( m - n ) = 90
=> m - n = 6 ( 2 )
Do b < a < 200 nên n < m < 13 ( 3 )
Từ ( 1 ) ; ( 2 ) và ( 3 ) => ( m ; n ) \(\in\) { ( 7; 1 ) ; ( 11 ; 5 )}
=> a , b \(\in\){ ( 105 ; 15 ) ; ( 165 ; 75 )}
Gọi hai số đó là a và b (a > b)
Ta có ƯCLN(a, b) = 15
=> a =15m và b = 15n (m > n; m, n là hai số nguyên tố cùng nhau) (1)
Do đó a - b = 15m - 15n = 15.(m - n) = 90
=> m - n = 6 (2)
Do b < a < 200 => n < m < 15 (3)
Từ (1), (2) và (3) =>(m, n) € {(7; 1); (11; 5)}
=> (a, b) € {(105; 15); (165; 75)}.