Tìm giá trị x thỏa mãn: x + (x+1) + (x+2) +....+ (x+99) =2021
Giúp mình với.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2x+1-2x=32
2xx2-2xx1=32
2xx(2-1)=32
2xx1=32
2x=32:1
2x=32
=>2x=25
=>x=5
HT
câu 1: =15
câu 2:=-98
câu 3: 54-(-16)-(-13)+27
= 70 - 14
= 56
\(A=\left|x-10\right|+2021\ge2021\forall x\)
Dấu '=' xảy ra khi x=10
\(\Leftrightarrow\dfrac{3}{2}\left(\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+...+\dfrac{1}{x}-\dfrac{1}{x+2}\right)=\dfrac{1}{5}\)
\(\Leftrightarrow\dfrac{1}{3}-\dfrac{1}{x+2}=\dfrac{1}{5}:\dfrac{3}{2}=\dfrac{2}{15}\)
\(\Leftrightarrow\dfrac{1}{x+2}=\dfrac{1}{5}\)
=>x+2=5
hay x=3
a) \(6xy+4x-9y-7=0\)
\(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)
\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)
\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)
Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)
Tự làm típ
\(A=x^3+y^3+xy\)
\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)
\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))
\(A=x^2+y^2\)
Áp dụng bất đẳng thức Bunhiakovxky ta có :
\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)
\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)
\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
Hay \(x^3+y^3+xy\ge\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)
\(x+\left(x+1\right)+\left(x+2\right)+...+\left(x+99\right)=2021\)
\(\left(x+x+x+...+x\right)+\left(1+2+...+99\right)=2021\)
\(100x+\left(1+2+...+99\right)=2021\)
Ta tính tổng \(A=1+2+...+99\) (Số số hạng của tổng là 99)
\(A=\left(1+99\right)+\left(2+98\right)+...+\left(49+51\right)+50\)
\(A=100+100+...+100+50=100\times49+50=4950\)
Vậy \(100x+4950=2021\)
Suy ra \(100x=2021-4950=-2929\), hay \(x=-29,29\)