K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔABC có BK là phân giác

nên AK/AB=CK/BC

=>AK/6=CK/8

=>AK/3=CK/4

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AK}{3}=\dfrac{CK}{4}=\dfrac{AK+CK}{3+4}=\dfrac{7}{7}=1\)

Do đó: AK=3cm; CK=4cm

7 tháng 3 2022

Áp dụng định lý phân giác:

BDCD=ABAC=23⇒3BD=2CD=2(BC−BD)BDCD=ABAC=23⇒3BD=2CD=2(BC−BD)

⇔5BD=2BC⇒BD=25BC⇒BDBC=25⇔5BD=2BC⇒BD=25BC⇒BDBC=25

AE=35AD=35(AE+DE)⇒2AE=3DE⇒DEAE=23AE=35AD=35(AE+DE)⇒2AE=3DE⇒DEAE=23

Qua D kẻ đường thẳng song song AC cắt AE tại F

Áp dụng định lý Talet:

FDAK=FEKE=DEAE=23FDAK=FEKE=DEAE=23

Talet cho tam giác BCK: FDCK=BDBC=25FDCK=BDBC=25

⇒(FDAK):(FDCK)=(23):(25)⇔CKAK=53⇒(FDAK):(FDCK)=(23):(25)⇔CKAK=53

⇒CKAC−CK=53⇒3CK=5(24−CK)⇒CK=15⇒CKAC−CK=53⇒3CK=5(24−CK)⇒CK=15

AK=AC−CK=9

18 tháng 5 2016

Bạn tự vẽ hình
a/Xét tam giác ABD có AB=BD(gt)
=>Tam giác ABD cân tại B (dấu hiệu nhận biết tam giác cân)
=>góc BAD= góc BDA hay góc BAD= góc HDA(1)
Vì tam giác ABC vuông tại A nên góc BAC = 90độ
Mà góc BAC=góc BAD+ góc DAC
Nên góc BAD+góc DAC =90độ(2)
Xét tam giác AHD vuông tại H( Vì AH là đường cao)
=>góc HAD +góc HDA=90 độ (trong tam giác vuông, hai góc nhọn phụ nhau) (3)
Từ (1),(2) và (3) suy ra góc HAD= góc DAC
=>AD là tia phân giác của góc HAC
b/Ta có AH vuông góc vớiBC (vì AH là đường cao)
=>góc AHC=90 độ
=> tam giác AHD vuông tại H
Vì DK vuông góc với AC (gt)
=>góc DKA=90độ
=>tam giác AKD vuông tại K
Xét tam giác AHD vuông tại H và  tam giác AKD vuông tại K có
cạnh huyền AD chung và góc HAD =góc KAD (Vì AD là phân giác của góc HAC)
=>tam giác AHD = tam giác AKD (ch.gn)
=>AH=AK( 2 cạnh tương ứng)

18 tháng 5 2016

c/ Xét tam giác DKC vuông tại K( vì DK vuông góc với AC)
=> góc DKC là góc lớn nhất trong tam giácDKC
mà cạnh DC đối diện với góc DKC
=>DC là cạnh lớn nhất trong tam giác DKC
=>DC>KC
=>DC+BD>KC+BD( cộng cả 2 vế với BD)
=>BC>KC+BD(Vì điểm D thuộc BC)
=>BC+AK>AK+KC+BD (cộng cả 2 vế với AK)
=>BC+AK>AC+BD( VÌ K nằm giữa A và C)
=>BC+AH>AC+AB (Vì AK= AH, BD=AB)
Vậy AB+AC<BC+AH

9 tháng 1 2018

Bố mày chịu

20 tháng 2 2022

minh dang can gap

Bài 1: 
AC=4cm

Xét ΔABC có AB<AC

nên \(\widehat{C}< \widehat{B}\)

Bài 2: 

BC=6cm

=>AB+AC=14cm

mà AB=AC

nên AB=AC=7cm

Xét ΔABC có AB=AC>BC

nên \(\widehat{B}=\widehat{C}>\widehat{A}\)

12 tháng 5 2018

a) Xét  \(\Delta BAH\) và      \(\Delta BCA\)có:

         \(\widehat{B}\) chung

        \(\widehat{BHA}=\widehat{BAC}=90^0\)

suy ra:   \(\Delta BAH~\Delta BCA\)  (g.g)

\(\Rightarrow\)\(\frac{AB}{BC}=\frac{BH}{AB}\)

\(\Rightarrow\)\(AB^2=BH.BC\)

c)  Áp dụng định lý Pytago vào tam giác vuông ABC ta có:

      \(AB^2+AC^2=BC^2\)

\(\Rightarrow\)\(BC=10\)

\(\Delta ABC\)có  AK  là phân giác  

\(\Rightarrow\)\(\frac{KB}{AB}=\frac{KC}{AC}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

    \(\frac{KB}{AB}=\frac{KC}{AC}=\frac{KB+KC}{AB+AC}=\frac{5}{7}\)

suy ra:  \(KB=\frac{30}{7}\)     \(KC=\frac{40}{7}\)

c) Xét  \(\Delta ABD\)và   \(\Delta HBI\)có:

    \(\widehat{ABD}=\widehat{HBI}\) (gt)

   \(\widehat{BAD}=\widehat{BHI}=90^0\)

suy ra:  \(\Delta ABD~\Delta HBI\)

\(\Rightarrow\)\(\frac{AB}{HB}=\frac{BD}{BI}\)

\(\Rightarrow\)\(AB.BI=BD.HB\)

d)    \(S_{ABC}=\frac{1}{2}.AB.AC=24\)

 \(\Delta ABH~\Delta CBA\) (câu a)

\(\Rightarrow\)\(\frac{S_{ABH}}{S_{CBA}}=\left(\frac{AB}{BC}\right)^2=\frac{9}{16}\)

\(\Rightarrow\)\(S_{ABH}=\frac{9}{16}.S_{ABC}=13,5\)

12 tháng 5 2018

â) chứng minh AB2 = BH . BC 

 Xét : \(\Delta ABHva\Delta ABC,co\):

       \(\widehat{B}\) là góc chung 

       \(\widehat{A}=\widehat{H}=90^o\)

Do do : \(\Delta ABH~\Delta ABC\left(g-g\right)\)

=> \(\frac{AB}{HB}=\frac{BC}{AB}\) (tỉ lệ tương ứng của 2 tam giác đồng dạng ) 

=> AB . AB = BH . BC

=> AB2       = BH . BC 

b)