cho tam giac abc có ab=6cm,bc=8,ac=7cm.vẽ phân giác bk
tính ak,kc
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý phân giác:
BDCD=ABAC=23⇒3BD=2CD=2(BC−BD)BDCD=ABAC=23⇒3BD=2CD=2(BC−BD)
⇔5BD=2BC⇒BD=25BC⇒BDBC=25⇔5BD=2BC⇒BD=25BC⇒BDBC=25
AE=35AD=35(AE+DE)⇒2AE=3DE⇒DEAE=23AE=35AD=35(AE+DE)⇒2AE=3DE⇒DEAE=23
Qua D kẻ đường thẳng song song AC cắt AE tại F
Áp dụng định lý Talet:
FDAK=FEKE=DEAE=23FDAK=FEKE=DEAE=23
Talet cho tam giác BCK: FDCK=BDBC=25FDCK=BDBC=25
⇒(FDAK):(FDCK)=(23):(25)⇔CKAK=53⇒(FDAK):(FDCK)=(23):(25)⇔CKAK=53
⇒CKAC−CK=53⇒3CK=5(24−CK)⇒CK=15⇒CKAC−CK=53⇒3CK=5(24−CK)⇒CK=15
AK=AC−CK=9
Bạn tự vẽ hình
a/Xét tam giác ABD có AB=BD(gt)
=>Tam giác ABD cân tại B (dấu hiệu nhận biết tam giác cân)
=>góc BAD= góc BDA hay góc BAD= góc HDA(1)
Vì tam giác ABC vuông tại A nên góc BAC = 90độ
Mà góc BAC=góc BAD+ góc DAC
Nên góc BAD+góc DAC =90độ(2)
Xét tam giác AHD vuông tại H( Vì AH là đường cao)
=>góc HAD +góc HDA=90 độ (trong tam giác vuông, hai góc nhọn phụ nhau) (3)
Từ (1),(2) và (3) suy ra góc HAD= góc DAC
=>AD là tia phân giác của góc HAC
b/Ta có AH vuông góc vớiBC (vì AH là đường cao)
=>góc AHC=90 độ
=> tam giác AHD vuông tại H
Vì DK vuông góc với AC (gt)
=>góc DKA=90độ
=>tam giác AKD vuông tại K
Xét tam giác AHD vuông tại H và tam giác AKD vuông tại K có
cạnh huyền AD chung và góc HAD =góc KAD (Vì AD là phân giác của góc HAC)
=>tam giác AHD = tam giác AKD (ch.gn)
=>AH=AK( 2 cạnh tương ứng)
c/ Xét tam giác DKC vuông tại K( vì DK vuông góc với AC)
=> góc DKC là góc lớn nhất trong tam giácDKC
mà cạnh DC đối diện với góc DKC
=>DC là cạnh lớn nhất trong tam giác DKC
=>DC>KC
=>DC+BD>KC+BD( cộng cả 2 vế với BD)
=>BC>KC+BD(Vì điểm D thuộc BC)
=>BC+AK>AK+KC+BD (cộng cả 2 vế với AK)
=>BC+AK>AC+BD( VÌ K nằm giữa A và C)
=>BC+AH>AC+AB (Vì AK= AH, BD=AB)
Vậy AB+AC<BC+AH
Bài 1:
AC=4cm
Xét ΔABC có AB<AC
nên \(\widehat{C}< \widehat{B}\)
Bài 2:
BC=6cm
=>AB+AC=14cm
mà AB=AC
nên AB=AC=7cm
Xét ΔABC có AB=AC>BC
nên \(\widehat{B}=\widehat{C}>\widehat{A}\)
a) Xét \(\Delta BAH\) và \(\Delta BCA\)có:
\(\widehat{B}\) chung
\(\widehat{BHA}=\widehat{BAC}=90^0\)
suy ra: \(\Delta BAH~\Delta BCA\) (g.g)
\(\Rightarrow\)\(\frac{AB}{BC}=\frac{BH}{AB}\)
\(\Rightarrow\)\(AB^2=BH.BC\)
c) Áp dụng định lý Pytago vào tam giác vuông ABC ta có:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow\)\(BC=10\)
\(\Delta ABC\)có AK là phân giác
\(\Rightarrow\)\(\frac{KB}{AB}=\frac{KC}{AC}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{KB}{AB}=\frac{KC}{AC}=\frac{KB+KC}{AB+AC}=\frac{5}{7}\)
suy ra: \(KB=\frac{30}{7}\) \(KC=\frac{40}{7}\)
c) Xét \(\Delta ABD\)và \(\Delta HBI\)có:
\(\widehat{ABD}=\widehat{HBI}\) (gt)
\(\widehat{BAD}=\widehat{BHI}=90^0\)
suy ra: \(\Delta ABD~\Delta HBI\)
\(\Rightarrow\)\(\frac{AB}{HB}=\frac{BD}{BI}\)
\(\Rightarrow\)\(AB.BI=BD.HB\)
d) \(S_{ABC}=\frac{1}{2}.AB.AC=24\)
\(\Delta ABH~\Delta CBA\) (câu a)
\(\Rightarrow\)\(\frac{S_{ABH}}{S_{CBA}}=\left(\frac{AB}{BC}\right)^2=\frac{9}{16}\)
\(\Rightarrow\)\(S_{ABH}=\frac{9}{16}.S_{ABC}=13,5\)
â) chứng minh AB2 = BH . BC
Xét : \(\Delta ABHva\Delta ABC,co\):
\(\widehat{B}\) là góc chung
\(\widehat{A}=\widehat{H}=90^o\)
Do do : \(\Delta ABH~\Delta ABC\left(g-g\right)\)
=> \(\frac{AB}{HB}=\frac{BC}{AB}\) (tỉ lệ tương ứng của 2 tam giác đồng dạng )
=> AB . AB = BH . BC
=> AB2 = BH . BC
b)
Xét ΔABC có BK là phân giác
nên AK/AB=CK/BC
=>AK/6=CK/8
=>AK/3=CK/4
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AK}{3}=\dfrac{CK}{4}=\dfrac{AK+CK}{3+4}=\dfrac{7}{7}=1\)
Do đó: AK=3cm; CK=4cm