Phân tích đa thức sau thành nhân tử:
(x^2+x+1).(x^2+x+2)-12
lần này thì sửa lại đề
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,\\ 1,=15\left(x+y\right)\\ 2,=4\left(2x-3y\right)\\ 3,=x\left(y-1\right)\\ 4,=2x\left(2x-3\right)\\ 2,\\ 1,=\left(x+y\right)\left(2-5a\right)\\ 2,=\left(x-5\right)\left(a^2-3\right)\\ 3,=\left(a-b\right)\left(4x+6xy\right)=2x\left(2+3y\right)\left(a-b\right)\\ 4,=\left(x-1\right)\left(3x+5\right)\\ 3,\\ A=13\left(87+12+1\right)=13\cdot100=1300\\ B=\left(x-3\right)\left(2x+y\right)=\left(13-3\right)\left(26+4\right)=10\cdot30=300\\ 4,\\ 1,\Rightarrow\left(x-5\right)\left(x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=5\end{matrix}\right.\\ 2,\Rightarrow\left(x-7\right)\left(x+2\right)=0\Rightarrow\left[{}\begin{matrix}x=7\\x=-2\end{matrix}\right.\\ 3,\Rightarrow\left(3x-1\right)\left(x-4\right)=0\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{3}\\x=4\end{matrix}\right.\\ 4,\Rightarrow\left(2x+3\right)\left(2x-1\right)=0\\ \Rightarrow\left[{}\begin{matrix}x=-\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
x^4 + 3x^2 - 4x - 12
= x^3 (x -2) + 3(x - 2)(x +2) +2x(x -2)
=(x -2)(x^3 + 3x + 6 + 2x)
= (x -2)(x^3 + 5x + 6 )
= (x - 2)(x^3 + x^2 -x^2 - x + 6x + 6)
= (x -2)[x^2(x+1) -x(x+1)+6(x+1)]
=(x-2)(x+1)(x^2-x+6)
\(x\cdot\left(x+1\right)\cdot\left(x+2\right)\cdot\left(x+3\right)+1\)
\(=\left(x+1\right)\left(x+2\right)\left[x\left(x+3\right)\right]+1\)
\(=\left(x^2+x+2x+2\right)\left(x^2+3x\right)+1\)
\(=\left(x^2+3x+2\right)\left(x^2+3x\right)+1\)
gọi \(\left(x^2+3x\right)=a\)
\(\Rightarrow\left(t+2\right)t+1\)
\(=t^2+2t+1=\left(t+1\right)^2\)
\(\Rightarrow=\left(x^2+3x+1\right)^2\)
\(\Rightarrow x\cdot\left(x+1\right)\cdot\left(x+2\right)\cdot\left(x+3\right)+1\)\(=\left(x^2+3x+1\right)^2\)
\(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)
\(=\left(x^2+3x\right)\left(x^2+3x+2\right)+1\)
\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)
\(=\left(x^2+3x+1\right)^2\)
x(x+1)(x+2)(x+3)+1
= [x(x+3)][(x+1)(x+2)]+1
=(x2+3x)(x2+3x+2)+1
Đặt x2+3x+1=y, ta có:
(y-1)(y+1)+1
=y2-1+1
=y2
Thay y=x2+3x+1, lại có:
(x2+3x+1)2
Đặt : u=x2+x+1
Ta có : u(u+1)-12
=u2+u-12
=u2+4u-3u-12
=u(u+4)-3(u+4)
=(u+4)(u-3)
=(x2+x+1+4)(x2+x+1-3)
=(x2+x+5)(x2+x-2)
=(x2+x+5)[(x2+2x)-x-2]
=(x2+x+5)[(x2+2x)-(x+2)]
=(x2+x+5)(x+2)(x-1)
Nhận xét : x2+x+5>0 , với mọi x , nên không phân tích được nữa