Giải bài toán sau bằng cách lập phương trình hoặc hệ phương trình :
Hai công nhân làm chung một công việc thì sau 5 giờ 50 phút sẽ hoàn thành xong công việc đó.
Sau khi làm chung 5 giờ thì người thứ nhất đi làm việc khác trong khi người thứ hai vẫn tiếp tục làm
trong 2 giờ nữa mới hoàn thành xong công việc. Hỏi nếu làm riêng thì mỗi người phải mất bao nhiêu
thời gian để hoàn thành xong công việc?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi thời gian người thứ nhất hoàn thành công việc khi làm một mình là x(h)
Thời gian người thứ hai hoàn thành công việc khi làm một mình là y(h)
Trong 1 giờ, người thứ nhất làm được: \(\dfrac{1}{x}\)(công việc)
Trong 1 giờ, người thứ hai làm được: \(\dfrac{1}{y}\)(công việc)
Trong 1 giờ, hai người làm được: \(\dfrac{1}{4}\)(công việc)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\)(1)
Vì nếu làm 1 mình thì người thứ nhất làm xong việc nhanh gấp đôi người thứ hai nên ta có phương trình: y=2x(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{4}\\2x=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{2x}=\dfrac{1}{4}\\y=2x\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2+1}{2x}=\dfrac{1}{4}\\y=2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=12\\y=2x\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=12\end{matrix}\right.\)
Gọi thời gian máy cày thứ nhất một mình làm xong công việc là x ( > 0; giờ )
=> thời gian máy cày thứ hai một mình làm xong công việc là x + 10 ( giờ )
1 giờ máy thứ nhất làm được: \(\frac{1}{x}\) ( công việc )
1 giờ máy thứ 2 làm được : \(\frac{1}{x+10}\) ( công việc )
1 giờ cả hai máy làm được: \(\frac{1}{12}\) ( công việc )
=> \(\frac{1}{x}+\frac{1}{x+10}=\frac{1}{12}\Leftrightarrow x+10+x=\frac{x^2+10x}{12}\)
<=> \(x^2-14x-120=0\Leftrightarrow\orbr{\begin{cases}x=-6\left(loai\right)\\x=20\left(tm\right)\end{cases}}\)
Vậy máy 1 làm riêng trong 20 giờ và máy thứ 2 làm riêng trong 30 giờ thì xong công việc.
Pt 1: 4(1/a + 1/b )= 1
Pt 2: 1/a + 3/b = 5/12
Từ 2 pt ta được hpt sau đó giải a,b với a là t/g người t1 làm cv đó, b là t/g người t2 làm cv đó
Gọi thời gian làm xong việc một mình của người thứ nhất và người thứ hai lần lượt là \(x,y\left(x,y>0\right)\)(đơn vị: h)
Trong 1 giờ, người thứ nhất làm xong \(\frac{1}{x}\)công việc còn người thứ hai làm xong \(\frac{1}{y}\)công việc.
2 người cùng làm trong 12 giờ thì xong công việc nên ta có phương trình \(\frac{12}{x}+\frac{12}{y}=1\)(1)
Trong 8 giờ, 2 người hoàn thành \(\frac{8}{x}+\frac{8}{y}\)công việc, sau đó người thứ 2 làm việc một mình trong 6h40p \(=\frac{20}{3}\)h, tức là hoàn thành thêm \(\frac{20}{3y}\) công việc thì xong công việc nên ta có pt \(\frac{8}{x}+\frac{8}{y}+\frac{20}{3y}=1\)(2)
Từ (1) và (2) ta có hpt \(\hept{\begin{cases}\frac{12}{x}+\frac{12}{y}=1\\\frac{8}{x}+\frac{8}{y}+\frac{20}{3y}=1\end{cases}}\)
Đặt \(\hept{\begin{cases}\frac{1}{x}=a\left(a>0\right)\\\frac{1}{y}=b\left(b>0\right)\end{cases}}\), hpt trên trở thành \(\hept{\begin{cases}12a+12b=1\\8a+8b+\frac{20}{3}b=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}24a+24b=2\\24a+24b+20b=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}12a+12b=1\\20b=1\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}12a+12.\frac{1}{20}=1\\b=\frac{1}{20}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}a=\frac{1}{30}\\b=\frac{1}{20}\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x}=\frac{1}{30}\\\frac{1}{y}=\frac{1}{20}\end{cases}}\Leftrightarrow\hept{\begin{cases}x=30\\y=20\end{cases}}\)(nhận)
Vậy người thứ nhất làm một mình xong công việc mất 30h, người thứ hai làm xong công việc một mình mất 20h
Bài 1:
Giả sử người thứ I làm riêng thì sau $a$ giờ thì xong. Khi đó người thứ II làm riêng sau $a+6$ giờ thì xong
Trong 1 giờ:
Người I làm $\frac{1}{a}$ công việc
Người II làm $\frac{1}{a+6}$ công việc
Trong 4 giờ, hai người làm:
$\frac{4}{a}+\frac{4}{a+6}=1$ (công việc)
Với $a>0$ ta dễ dàng tìm được $a=6$ (giờ)
Vậy người I làm riêng mất $6$ giờ, người II làm riêng mất $12$ giờ.
Bài 2:
Thể tích bồn nước là:
$V=S_{đáy}. h=0,42.1,65=0,693(m^3)$
Vậy bồn nước này đựng đầy $0,693$ mét khối nước.
Gọi thời gian làm riêng hoàn thành công việc của người thứ nhất là x (ngày) với x>0
Thời gian làm riêng hoàn thành của hai là y ngày (y>0)
Do người 2 làm ít hơn người 1 là 6 ngày nên: \(x-y=6\)
Trong 1 ngày người thứ nhất làm được \(\dfrac{1}{x}\) phần công việc
Trong 1 ngày người thứ hai làm được \(\dfrac{1}{y}\) phần công việc
Do 2 người làm chung trong 4 ngày xong việc nên: \(4\left(\dfrac{1}{x}+\dfrac{1}{y}\right)=1\)
Ta có hệ: \(\left\{{}\begin{matrix}x-y=6\\\dfrac{4}{x}+\dfrac{4}{y}=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=y+6\\\dfrac{4}{y+6}+\dfrac{4}{y}=1\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=y+6\\4y+4\left(y+6\right)=y\left(y+6\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=y+6\\y^2-2y-24=0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=12\\y=6\end{matrix}\right.\)
Gọi thời gian tổ 1 hoàn thành công việc khi làm một mình là x(giờ)
thời gian tổ 2 hoàn thành công việc khi làm một mình là y(giờ)
(Điều kiện: x>12; y>12)
Trong 1 giờ, tổ 1 làm được: \(\dfrac{1}{x}\)(công việc)
Trong 1 giờ, tổ 2 làm được: \(\dfrac{1}{y}\)(công việc)
Trong 1 giờ, hai tổ làm được: \(\dfrac{1}{12}\)(công việc)
Do đó, ta có phương trình: \(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\)(1)
Vì khi tổ 1 làm một mình trong 2 giờ và tổ 2 làm một mình trong 7 giờ thi hai tổ làm được một nửa công việc nên ta có phương trình:
\(\dfrac{2}{x}+\dfrac{7}{y}=\dfrac{1}{2}\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\\\dfrac{2}{x}+\dfrac{7}{y}=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{2}{x}+\dfrac{2}{y}=\dfrac{1}{6}\\\dfrac{2}{x}+\dfrac{7}{y}=\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-5}{y}=\dfrac{-1}{3}\\\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{12}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=15\\\dfrac{1}{x}=\dfrac{1}{12}-\dfrac{1}{15}=\dfrac{1}{60}\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=60\\y=15\end{matrix}\right.\)(thỏa ĐK)
Vậy: Tổ 1 cần 60 giờ để hoàn thành công việc khi làm một mình
Tổ 2 cần 15 giờ để hoàn thành công việc khi làm một mình
Gọi thời gian hoàn thành công việc khi làm một mình của người 1 và người 2 lần lượt là a,b
Trong 1h,người 1 làm được 1/a(công việc)
Trong 1h, người 2 làm được 1/b(công việc)
Theo đề, ta có:
1/a+1/b=1/(5+5/6) và 5/a+7/b=1
=>1/a+1/b=6/35 và 5/a+7/b=1
=>a=10 và b=14