K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2021

\(\dfrac{5}{x}+1+\dfrac{4}{x}+1=\dfrac{3}{-13}\\ \Rightarrow\dfrac{9}{x}+2=-\dfrac{3}{13}\\ \Rightarrow\dfrac{9}{x}=-\dfrac{59}{13}\\ \Rightarrow x=-\dfrac{207}{59}\)

27 tháng 8 2021

a. \(\dfrac{5}{x+1}+\dfrac{4}{x+1}=\dfrac{-3}{13}\)

ĐKXĐ: x ≠ -1

⇔ \(\dfrac{65}{13\left(x+1\right)}+\dfrac{52}{13\left(x+1\right)}=\dfrac{-3\left(x+1\right)}{13\left(x+1\right)}\)

⇔ 65 + 52 = -3(x + 1)

⇔ 117 = -3x - 3

⇔ 117 + 3 = -3x

⇔ 120 = -3x 

⇔ x = \(\dfrac{120}{-3}=-40\) (TM)

b. -x + 2 + 2x + 3 + x + \(\dfrac{1}{4}\) + 2x + \(\dfrac{1}{6}\) = \(\dfrac{8}{3}\)

⇔ -x + 2x + x + 2x = \(\dfrac{8}{3}-\dfrac{1}{6}-\dfrac{1}{4}-3-2\)

⇔ 4x = -2,75

⇔ x = \(\dfrac{-2,75}{4}=\dfrac{-11}{16}\)

c. \(\dfrac{3}{2x+1}+\dfrac{10}{4x+2}-\dfrac{6}{6x+2}\) = \(\dfrac{12}{26}\)

⇔  \(\dfrac{3}{2x+1}+\dfrac{10}{2\left(2x+1\right)}-\dfrac{6}{2\left(3x+1\right)}=\dfrac{12}{26}\)

⇔ \(\dfrac{312\left(3x+1\right)}{104\left(2x+1\right)\left(3x+1\right)}\) + \(\dfrac{520\left(3x+1\right)}{104\left(2x+1\right)\left(3x+1\right)}\) - \(\dfrac{312\left(2x+1\right)}{104\left(2x+1\right)\left(3x+1\right)}\)

\(\dfrac{48\left(2x+1\right)\left(3x+1\right)}{104\left(2x+1\right)\left(3x+1\right)}\)

⇔ 312(3x +1) + 520(3x + 1) - 312(2x + 1) = 48(2x + 1)(3x + 1)

⇔ 936x + 312 + 1560x + 520 - 624x - 312 = (96x + 48)(3x + 1)

⇔ 936x + 312 + 1560x + 520 - 624x - 312 = 288x2 + 96x + 144x + 48

⇔ 936x + 1560x - 624x - 96x - 144x - 288x2 = 48 - 312 - 520 + 312

⇔ 1632x - 288x2 = -472

⇔ -288x2 + 1632x + 472 = 0 (Tự giải tiếp, dùng phương pháp tách hạng tử)

⇔ x = 5,942459684 \(\approx\) 6

5 tháng 7 2017

\(\frac{1}{3}-\left(\frac{2}{3}-x+\frac{5}{4}\right)=\frac{7}{12}-\left(\frac{5}{2}-\frac{13}{6}\right)\)

\(\frac{1}{3}-\left(\frac{2}{3}-x+\frac{5}{4}\right)=\frac{7}{12}-\frac{1}{3}\)

\(\frac{1}{3}-\left(\frac{2}{3}-x+\frac{5}{4}\right)=\frac{1}{4}\)

\(\frac{2}{3}-x+\frac{5}{4}=\frac{1}{3}-\frac{1}{4}\)

\(\frac{2}{3}-x+\frac{5}{4}=\frac{1}{12}\)

\(\frac{2}{3}-x=\frac{1}{12}-\frac{5}{4}\)

\(\frac{2}{3}-x=-\frac{7}{6}\)

\(x=\frac{2}{3}-\left(-\frac{7}{6}\right)\)

\(x=\frac{2}{3}+\frac{7}{6}\)

\(x=\frac{11}{6}\)

23 tháng 11 2016

vì n và n+1 là 2 số tự nhiên liên tiếp

=) n + n+1 chia hết cho 2        (1)

vì n, n+1 và n+2 là 3 stn liên tiếp 

=) n+n+1+n+2 chia hết cho 3     (2)

Từ (1) và (2) =) n+n+1+n+2 chia hết cho 6

hay BCNN của n+n+1+n+2 là 6

vậy ....

25 tháng 2 2020

1,S=2-4-6+8+10-12-14+16+.......+1994-1996-1998+2000

  S =(2-4-6+8)+(10-12-14+16)+......+(1994-1996-1998+2000)

  S= 0 +0+........+0

  S=0

2/ Vì 13 chia hết cho x-2

-> x-2 thuộc Ư(13)={1;13;-1;-13}

ta có bảng

x-2    1  13   -1 -13
x   3   15     1  -11

3/ Vì -15chia hết cho n-3->n-3 thuộc Ư(-15)={1;3;5;15;-1;-3;-5;-15}

Ta có bảng

n-3  1  3  5 15 -1 -3 -5-15
n4681820-2-12

4/ n-2 thuộc Ư(3)={1;3;-1;-3}

ta có bảng

n-2  1  3 -1 -3
n351-1
11 tháng 4 2023

1.     Giải:

Do \(5x+13B\in\left(2x+1\right)\Rightarrow5x+13⋮2x+1.\)

 

 \(\Rightarrow2\left(5x+13\right)⋮2x+1\Rightarrow10x+26⋮2x+1.\)

 \(\Rightarrow5\left(2x+1\right)+21⋮2x+1.\)

Do 5(2x+1)⋮2x+1⇒ Ta cần 21⋮2x+1.

⇒ 2x+1 ϵ B(21)=\(\left\{1;3;7;21\right\}.\)

Ta có bảng:

   2x+1        1       3       7      21
       x        0       1       3      10
        TM      TM      TM      TM

Vậy xϵ\(\left\{0;1;3;10\right\}.\)

2. Giải:

Do (2x-18).(3x+12)=0.

⇒ 2x-18=0             hoặc             3x+12=0.

⇒ 2x     =18                               3x       =-12.

⇒   x     =9                                   x       =-4.

Vậy xϵ\(\left\{-4;9\right\}.\)

3. S= 1-2-3+4+5-6-7+8+...+2021-2022-2023+2024+2025.

S= (1-2-3+4)+(5-6-7+8)+...+(2021-2022-2023+2024)+2025 Có 506 cặp.

S= 0 + 0 + ... + 0 + 2025.

⇒S= 2025.

 

7 tháng 1 2018

2)

Tổng của 2 số là 2009

=> Trong 2 số phải có 1 số chẵn và 1 số lẻ

Mà số nguyên tố chẵn duy nhất là 2

=> 1 số là 2. Số còn lại là:

      2009 - 2 = 2007 không là số nguyên tố

=> Tổng của 2 số nguyên tố không thể bằng 2009.

7 tháng 1 2018

1) 

Với p = 2 => p + 2 = 2 + 2 = 4 là hợp số (loại)

Với p = 3 => p + 2 = 3 + 2 = 5 là  SNT

                => p + 4 = 3 + 4 = 7 là SNT (thỏa mãn)

Với p > 3 => p có dạng 3k + 1 hoặc 3k + 2 (k ∈ N*)

Nếu p = 3k + 1 => p + 2 = 3k + 1 + 2 = 3k + 3 chia hết cho 3 và lớn hơn 3

=> p + 2 là hợp số (loại)

Nếu p = 3k + 2 => p + 4 = 3k + 2 + 4 = 3k + 6 chia hết cho 3 và lớn hơn 3

=> p + 4 là hợp số (loại)

Vậy p = 3