Cho abc=2000.Tinh P=(2000a/ab+2000a+2000) + (b/bc+b+2000) + (c/ac+c+1)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P=\(\dfrac{2000a}{ab+2000a+2000}\)
P=\(\dfrac{a^2bc}{ab+a^2bc+abc}\)
P=\(\dfrac{a^2bc}{ab\left(1+ac+c\right)}\)
P=\(\dfrac{ac}{1+ac+c}\)
\(P=\frac{2000a}{ab+2000a+2000}+\frac{b}{bc+b+2000}+\frac{c}{ac+c+1}\)
\(=\frac{a\cdot abc}{ab+abc\cdot a+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)
\(=\frac{a^2bc}{ab+a^2bc+abc}+\frac{b}{bc+b+abc}+\frac{c}{ac+c+1}\)
\(=\frac{a^2bc}{ab\left(ac+c+1\right)}+\frac{b}{b\left(ac+c+1\right)}+\frac{c}{ac+c+1}\)
\(=\frac{ac}{ac+c+1}+\frac{1}{ac+c+1}+\frac{c}{ac+c+1}\)
\(=\frac{ac+c+1}{ac+c+1}=1\)
Đặt bt là P ta có
P = 2000a/(ab + 2000a + 2000) + b/(bc + b + 2000) + c/(ac + c + 1)
= 2000ac/(abc + 2000ac + 2000c) + b/(bc + b + abc) + c/(ac + c + 1)
= 2000ac/(2000 + 2000ac + 2000c) + 1/(1 + c + ac) + c/(ac + c + 1)
= ac/(1 + ac + c) + 1/(ac + c + 1) + c/(ac + c + 1)
= (ac + c + 1)/(ac + c + 1) = 1
Không thực hiện phép tính hãy cho biết 3 chữ số tận cùng của tích 12 chữ số nguyên dương đầu tiên
Ta có: 2000a = 24.53.a
Ta đã biết số chính phương chỉ chứa các thừa số nguyên tố với số mũ chẵn, không chứa các thừa số nguyên tố với số mũ lẻ nên để 2000a là số chính phương thì a = 5.k2 (k thuộc N*)
Do a chia hết cho 6 => 5.k2 chia hết cho 6
Mà (5;6)=1 => k2 chia hết cho 6 => k chia hết cho 6
Mà a nhỏ nhất => k nhỏ nhất => k = 6
=> a = 5.62 = 5.36 = 180
Vậy số cần tìm là 180
\(ac=bd\Rightarrow\frac{a}{d}=\frac{b}{c}\Rightarrow\frac{a}{b}=\frac{d}{c}=\frac{a^{2000}}{b^{2000}}=\frac{d^{2000}}{c^{2000}}=\left(\frac{a}{b}\right)^{2000}=\left(\frac{c}{d}\right)^{2000}=\frac{\left(a+d\right)^{2000}}{\left(b+c\right)^{2000}}\)
\(=\frac{a^{2000}+d^{2000}}{b^{2000}+c^{2000}}\)
Vậy...
tc \(0\le a;b;c\le1\)
\(a^3+b^3+c^3+a+b+c=2a^2+2b^2+2c^2=2\)
\(a^3-2a^2+a+b^3-2b^2+b+c^3-2c^2+c=0\)
\(a\left(a-1\right)^2+b\left(b-1\right)^2+c\left(c-1\right)^2=0\)
\(\hept{\begin{cases}a\left(a-1\right)^2=0\\b\left(b-1\right)^2=0\\c\left(c-1\right)^2=0\end{cases}}\)
đến đây lập luận ok
1/a+1/b+1/c=1/200
=>\(\frac{a+b}{ab}=\frac{1}{2000}-\frac{1}{c}\)\(\frac{\Leftrightarrow a+b}{ab}=\frac{c-2000}{2000c}\Rightarrow\left(c-2000\right)ab=\left(a+b\right)2000c\)
a + b +c = 2000 => a + b = 2000 - c
________________________________________**** cho mình nhé bn Lee Min Ho
Câu hỏi của đàm anh quân lê - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo cách làm tương tự !