Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\frac{a}{b}\)=\(\frac{c}{d}\)=k \(\hept{\begin{cases}a=kb\\c=kd\end{cases}}\)
Ta có: \(\frac{a+c}{b+d}\)= \(\frac{kb+kd}{b+d}\)=\(\frac{k\left(b+d\right)}{b+d}\)=k (1)
\(\frac{a-c}{b-d}\)= \(\frac{kb-kd}{b-d}\)=\(\frac{k\left(b-d\right)}{b-d}\)=k (2)
Từ (1) và (2) =>\(\frac{a+c}{b+d}\)=\(\frac{a-c}{b-d}\)
Ta có: b2 = ac
=> a/b = b/c (1)
Ta có: c2 = bd
=> b/c = c/d (2)
Từ (1) và (2)
=> a/b = b/c = c/d
=> a2/ b2 = c2 / b2 = c2/d2 = ( a+ b+ c )2/ (b+d+c )2 =a2 +b2 +c2 / b2 + c2 +d2 (3)
( tính chất dãy tỉ số bằng nhau)
Ta có: a/b = b/c = c/d
=> a/b . b/c . c/d = (a/b)3 = a.b.c/b.d.c = a/d (4)
Từ (3) và (4)
=> ( a+ b+ c )2/ (b+d+c )2 =a2 +b2 +c2 / b2 + c2 +d2 = a/d
chúc bạn hok tốt
này Trần Bình Như, cho mk hỏi tại sao lại là \(\left(\frac{a}{b}\right)^3\)
Lời giải:
Từ \(b^2=ac; c^2=bd\Rightarrow \frac{b}{c}=\frac{a}{b}=\frac{c}{d}\)
Đặt \(\frac{b}{c}=\frac{a}{b}=\frac{c}{d}=t\Rightarrow b=ct; a=bt; c=dt\)
Khi đó:
\(\frac{a^2+b^2+c^2}{b^2+c^2+d^2}=\frac{(bt)^2+(ct)^2+(dt)^2}{b^2+c^2+d^2}=t^2(1)\)
\(\frac{(a+b+c)^2}{(b+c+d)^2}=\frac{(bt+ct+dt)^2}{(b+c+d)^2}=\frac{t^2(b+c+d)^2}{(b+c+d)^2}=t^2(2)\)
\(\frac{a}{d}=\frac{bt}{d}=\frac{ct.t}{d}=\frac{dt.t.t}{d}=t^3\)
Vậy \(\frac{a^2+b^2+c^2}{b^2+c^2+d^2}=\frac{(a+b+c)^2}{(b+c+d)^2}\) nhưng không bằng $\frac{a}{d}$ (trừ phi $t=1$)
Đặng Quốc Huy: bạn đọc bài giải của mình sẽ hiểu là đề của bạn sai đấy. Chỉ có dấu "=" đầu tiên đúng thôi. Vì 2 phân thức đầu tiên có giá trị $t^2$, còn $\frac{a}{d}=t^3$ nên đâu thể khẳng định 3 phân thức bằng nhau, trừ phi $t=1$
Đề bài sai nhé
Đẳng thức này mới đúng: \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}=\frac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}=\frac{a}{d}\)
\(\left\{{}\begin{matrix}b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\\c^2=bd\Rightarrow\frac{b}{c}=\frac{c}{d}\end{matrix}\right.\) \(\Rightarrow\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
\(\Rightarrow\frac{a}{d}=\frac{abc}{bcd}=\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{\left(a+b+c\right)^3}{\left(b+c+d\right)^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)
a^2+ab+b^2/3=c^2+b^2/3+a^2+ac+c^2
=>ab=2c^2+ac
=>2c/a=(b+c)/(a+c)
a/ Nhân cả 2 vế với a+b+c+d
\(\Rightarrow\frac{a+b+c+d}{a+b+c}+\frac{a+b+c+d}{b+c+d}+\frac{a+b+c+d}{c+d+a}+\frac{a+b+c+d}{d+a+b}=\frac{a+b+c+d}{40}.\)
\(\Rightarrow1+\frac{d}{a+b+c}+1+\frac{a}{b+c+d}+1+\frac{b}{c+d+a}+1+\frac{c}{d+a+b}=\frac{2000}{40}=50\)
\(\Rightarrow S=46\)
Đặt \(\frac{a}{b}=\frac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
Ta có
\(VT:\frac{a^{2018}+c^{2018}}{b^{2018}+d^{2018}}=\frac{b^{2018}\cdot k^{2018}+d^{2018}\cdot k^{2018}}{b^{2018}+d^{2018}}=\frac{k^{2018}\left(b^{2018}+d^{2018}\right)}{b^{2018}+d^{2018}}=k^{2018}\)
\(VP:\frac{\left(a+c\right)^{2018}}{\left(b+d\right)^{2018}}=\frac{\left(bk+dk\right)^{2018}}{\left(b+d\right)^{2018}}=\frac{k^{2018}\cdot\left(b+d\right)^{2018}}{\left(b+d\right)^{2018}}=k^{2018}\)
\(\Rightarrow VT=VP\)
Hay \(\frac{a^{2018}+c^{2018}}{b^{2018}+d^{2018}}=\frac{\left(a+c\right)^{2018}}{\left(b+d\right)^{2018}}\left(đpcm\right)\)
\(ac=bd\Rightarrow\frac{a}{d}=\frac{b}{c}\Rightarrow\frac{a}{b}=\frac{d}{c}=\frac{a^{2000}}{b^{2000}}=\frac{d^{2000}}{c^{2000}}=\left(\frac{a}{b}\right)^{2000}=\left(\frac{c}{d}\right)^{2000}=\frac{\left(a+d\right)^{2000}}{\left(b+c\right)^{2000}}\)
\(=\frac{a^{2000}+d^{2000}}{b^{2000}+c^{2000}}\)
Vậy...