Cho bt: M=3x-2
a) Tìm gt của biến x để M=0
b) Cho bt: A=( x^2 - 3x ) - (3x - 9 ) +5
Cm A luôn dương với mọi gt của biến x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
câu a: 9x^2-6x+2=(3x-1)^2+1>=1>0 mọi x
câu b:x^2+x+1=(x-1/2)^2+3/4>0 với mới x
a/x^4 lớn hơn hoặc = 0
x^2 lớn hơn hoặc = 0
2 > 0
=> x^4+x^2+2 >0 => bieu thức luôn dương
b/ (x+3)(x-11)+2003 <=> x^2 -8x -33 +2003 <=> x^2 -8x +1970 <=> x^2-8x+16+1954 <=> (x-4)^2+1954
ta có : (x-4)^2 lớn hơn hoặc = 0
1954 >0
=> (x-4)^2+1954>0 => bt luôn dương
Bài 1 trước nha . chúc bạn học tốt . Ủng hộ nha
\(=>-9\left(x^2-\frac{4}{3}x+\frac{5}{3}\right)=>-9\left(x^2-2.\frac{2}{3}x+\frac{4}{9}+\frac{11}{9}\right)=>-9\left(x-\frac{2}{3}\right)^2-11\)
Ta có \(\left(x-\frac{2}{3}\right)^2\ge0=>-9\left(x-\frac{2}{3}\right)^2\le0,-11< 0\)
\(-9\left(x-\frac{2}{3}\right)^2-11\le0\)=> bt luôn âm
\(y'=x^2-2\left(m-2\right)x+m^2-3m+2\)
a. Hàm đồng biến trên khoảng đã cho khi và chỉ khi:
\(y'\ge0\) ; \(\forall x>3\)
\(\Leftrightarrow x^2-2\left(m-2\right)x+m^2-3m+2\ge0\) ; \(\forall x>3\)
Ta có: \(\Delta'=\left(m-2\right)^2-\left(m^2-3m+2\right)=-m+2\)
TH1: \(\Delta'\le0\Leftrightarrow m\ge2\)
TH2: \(\left\{{}\begin{matrix}\Delta'>0\\x_1< x_2\le2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\\left(x_1-2\right)\left(x_2-2\right)\ge0\\\dfrac{x_1+x_2}{2}< 2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\x_1x_2-2\left(x_1+x_2\right)+4\ge0\\x_1+x_2< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m^2-3m+2-4\left(m-2\right)+4\ge0\\2\left(m-2\right)< 4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\m^2-7m+4\ge0\\m< 4\end{matrix}\right.\) \(\Leftrightarrow m< 2\)
Kết hợp lại ta được hàm đồng biến trên \(\left(2;+\infty\right)\) với mọi m
b.
Hàm số đồng biến trên khoảng đã cho khi và chỉ khi:
\(y'\ge0\) ; \(\forall x< 0\)
\(\Leftrightarrow x^2-2\left(m-2\right)x+m^2-3m+2\ge0\) ; \(\forall x< 0\)
TH1: \(\Delta'=-m+2\le0\Leftrightarrow m\ge2\)
TH2: \(\left\{{}\begin{matrix}\Delta'>0\\0\le x_1< x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 2\\x_1+x_2=2\left(m-2\right)>0\\x_1x_2=m^2-3m+2\ge0\end{matrix}\right.\) \(\Rightarrow\) ko tồn tại m thỏa mãn
Kết hợp lại ta được: \(m\ge2\)
1) \(3\left(x-1\right)^2-\left(x+1\right)^2+2\left(x-3\right)\left(x+3\right)^2-\left(5-16x\right)\)
\(=3\left(x^2-2x+1\right)+2\left(x^2-9\right)-\left(4x^2+12x+9\right)-\left(5-16x\right)\)
\(=3x^2-6x+3-x^2-2x-1+2x^2-18-4x^2-12x-9-5+16x\)
\(=-30\)
\(A=\left(3x-1\right)^2-\left(x-1\right)^2+2\left(x-3\right)\left(x+3\right)-\left(2x+3\right)^2+\left(16x-5\right)\)
\(=9x^2-6x+1-x^2+2x-1+2\left(x^2-9\right)-\left(4x^2+12x+9\right)+16x-5\)
\(=8x^2+12x-5+2x^2-18-4x^2-12x-9\)
\(=6x^2-32\)
a) \(9x^2-6x+2=\left(9x^2-6x+1\right)+1\)
\(=\left(3x-1\right)^2+1>0\)
b) \(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\)
c) \(2x^2+2x+1=2\left(x^2+x+\dfrac{1}{2}\right)\)
\(=2\left(x^2+x+\dfrac{1}{4}+\dfrac{1}{4}\right)=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{1}{2}>0\)
2)
\(-9x^2+12x-15=-\left(9x^2-12x+15\right)\)
\(=-\left(9x^2-12x+4+11\right)\)
\(=-\left(9x^2-12x+4\right)-11=-\left(3x-2\right)^2-11\le-11< 0\)
\(A=\frac{x-2}{3x+2}\)
+A =0 => x -2 =0 => x =2
+ A<0 => (x-2)(3x+2) <0
=> x < -2/3 hoặc x > 2
a: \(M=\dfrac{x^2-3x+2x^2+6x-3x^2-9}{\left(x-3\right)\left(x+3\right)}=\dfrac{3}{x+3}\)
\(a,M=3x-2=0\\ \Rightarrow3x=2\\ \Leftrightarrow x=\dfrac{3}{2}\)
\(b,A=\left(x^2-3x\right)-\left(3x-9\right)+5\\ =x^2-3x-3x+9+5\\ =x^2-6x+14\\ =\left(x^2-6x+9\right)+5\\ =\left(x-3\right)^2+5\ge5>0\forall x\)
Suy ra A luôn dương với mọi biến của `x`