K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2016
X có đương không
15 tháng 6 2017

A = \(\frac{x^2}{3}+\frac{x^2}{3}+\frac{x^2}{3}+\frac{1}{x^3}+\frac{1}{x^3}\ge5\sqrt[5]{\frac{1}{27}}\)

dấu bằng xảy ra khi x = \(\sqrt[5]{3}\)

3 tháng 8 2018

\(\frac{1}{a}+\frac{1}{b}=\frac{\left(a+b\right)}{ab}=\frac{9}{ab}\)

de dc gtnn thi ab phai lon nhat=>

theo bdt cosi ta co:\(a+b>=2\sqrt{ab}\Rightarrow\left(a+b\right)^2>=4ab\Rightarrow\frac{9^2}{4}=\frac{81}{4}>=ab\)

=>\(\frac{9}{ab}\)>=\(9:\frac{81}{4}\)=>\(\frac{9}{ab}>=\frac{4}{9}\)=>gtnn=4/9 xay ra dau = khi a=b=9/2

20 tháng 8 2017

mình ko biết, bạn k nha

Cái cậu Nguyễn Minh Tuấn kia đã không lm bài rồi lại còn yêu cầu người khác k nữa

26 tháng 5 2016

\(x=\sqrt{x-\frac{1}{x}}+\sqrt{1-\frac{1}{x}}\)(ĐK :\(x\ge1\))

\(\Leftrightarrow x-\sqrt{1-\frac{1}{x}}=\sqrt{x-\frac{1}{x}}\)

\(\Leftrightarrow x^2+1-\frac{1}{x}-2x\sqrt{1-\frac{1}{x}}=x-\frac{1}{x}\)

\(\Leftrightarrow x^2-x+1-2x\sqrt{1-\frac{1}{x}}=0\)

\(\Leftrightarrow\left(x^2-x\right)-2\sqrt{x^2-x}+1=0\)

\(\Leftrightarrow\left(\sqrt{x^2-x}-1\right)^2=0\)

\(\Rightarrow\sqrt{x^2-x}=1\Leftrightarrow x^2-x-1=0\)

\(\Rightarrow x=\frac{1+\sqrt{5}}{2}\)(nhận) hoặc \(x=\frac{1-\sqrt{5}}{2}\)(loại)

Vậy tập nghiệm của phương trình : \(S=\left\{\frac{1+\sqrt{5}}{2}\right\}\)

Về hướng giải bài bằng bất đẳng thức Cosi mình chưa nghĩa ra :))

7 tháng 6 2020

Bài làm:

Ta có: \(A=x+\frac{1}{x^2}=\left(\frac{1}{x^2}+\frac{x}{8}+\frac{x}{8}\right)+\frac{3}{4}x\ge3\sqrt[3]{\frac{1}{x^2}.\frac{x}{8}.\frac{x}{8}}+\frac{3}{4}.2\)

\(=3.\frac{1}{4}+\frac{3}{2}=\frac{3}{4}+\frac{3}{2}=\frac{9}{4}\)

Dấu "=" xảy ra khi: \(\frac{1}{x^2}=\frac{x}{8}\Leftrightarrow x^3=8\Leftrightarrow x=2\)

Vậy \(Min\left(A\right)=\frac{9}{4}\)khi \(x=2\)

Học tốt!!!!

26 tháng 8 2017

\(\frac{x^2}{x-1}=\frac{x^2-1+1}{x-1}=\frac{\left(x-1\right)\left(x+1\right)+1}{x-1}=x+1+\frac{1}{x-1}=x-1+\frac{1}{x-1}+2\)

Do \(x>1\) nên \(x-1>0;\frac{1}{x-1}>0\) Áp dụng bất đẳng thức Cauchy ta có :

\(x-1+\frac{1}{x-1}\ge2\sqrt{\left(x-1\right).\frac{1}{x-1}}=2\)

\(\Rightarrow x-1+\frac{1}{x-1}+2\ge4\) hay \(\frac{x^2}{x-1}\ge4\) có GTNN là 4

Dấu "=" xảy ra \(\Leftrightarrow x=2\)

26 tháng 8 2017

Ta có \(\frac{x^2}{x-1}=\frac{x^2-1}{x-1}+\frac{1}{x-1}=x+1+\frac{1}{x-1}\)+2. Áp dụng cosi cho 2 số x+1 và 1/x-1 ta có x+1+1/x-1\(\ge\)2\(\sqrt{\left(x-1\right)\frac{1}{x-1}}=1\), suy ra biểu thức \(\ge\)3, vậy giá trị nn =3 khi x-1=1/x-1, đến đó bn giải tìm x nha