K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 6 2021

\(x^2-\left(m+4\right)x+4m=0\) (1)

a)Thay x=2 vào pt (1) ta được: \(4-\left(m+4\right).2+4m=0\) \(\Leftrightarrow m=2\)

Thay m=2 vào pt (1) ta được: \(x^2-6x+8=0\)\(\Leftrightarrow x^2-4x-2x+8=0\)

\(\Leftrightarrow\left(x-4\right)\left(x-2\right)=0\)\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=4\end{matrix}\right.\)

Vậy nghiệm còn lại là 4

b)Để pt có hai nghiệm pb \(\Leftrightarrow\Delta>0\Leftrightarrow m^2-8m+16>0\)\(\Leftrightarrow\left(m-4\right)^2>0\)\(\Leftrightarrow m\ne4\)

Do x1 là một nghiệm của pt \(\Rightarrow x_1^2-\left(m+4\right)x_1+4m=0\)

\(\Rightarrow x_1^2=\left(m+4\right)x_1-4m=0\)

Theo viet có: \(x_1+x_2=m+4\)

\(x_1^2+\left(m+4\right)x_2=16\)

\(\Leftrightarrow\left(m+4\right)x_1-4m+\left(m+4\right)x_2=16\)

\(\Leftrightarrow\left(m+4\right)\left(x_1+x_2\right)-4m-16=0\)

\(\Leftrightarrow\left(m+4\right)^2-4m-16=0\)

\(\Leftrightarrow m^2+4m=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-4\end{matrix}\right.\)(Thỏa)

Vậy...

5 tháng 6 2021

Cảm ơn nha

a) Thay x=0 vào phương trình, ta được:

\(4\cdot0^2-2\cdot\left(2m+3\right)\cdot0+m+1=0\)

\(\Leftrightarrow m+1=0\)

hay m=-1

Áp dụng hệ thức Vi-et, ta có: 

\(x_1+x_2=\dfrac{2\left(2m+3\right)}{4}\)

\(\Leftrightarrow x_1=\dfrac{2\cdot\left(-2+3\right)}{4}=\dfrac{2}{4}=\dfrac{1}{2}\)

Vậy: Khi m=-1 và nghiệm còn lại là \(x=\dfrac{1}{2}\)

Thịnh ơi, vì sao mình không dùng x1x2 để tìm m

10 tháng 3 2022

a, bạn tự giải 

b, \(\Delta=\left(m+1\right)^2-4m=\left(m-1\right)^2\ge0\)

Vậy pt luôn có 2 nghiệm x1 ; x2 

c, Thay x = 1 ta được \(1+m+1+m=0\Leftrightarrow2m+2=0\Leftrightarrow m=-1\)

Thay m = -1 vào ta được \(x^2-1=0\Leftrightarrow x=1;x=-1\)

hay nghiệm còn lại là -1 

16 tháng 5 2021

1) điều kiện của m: m khác 5/2

thế x=2 vào pt1 ta đc:

(2m-5)*4 - 4(m-1)+3=0 <=> 8m-20-4m+4+3=0<=> 4m = 13 <=> m=13/4 (nhận)

lập △'=[-(m-1)]2-*(2m-5)*3 = (m-4)2

vì (m-4)2 ≥ 0 nên phương trình có nghiệm kép => x1= x2 =2

3) vì △'≥0 với mọi m nên phương trình đã cho có nghiệm với mọi m

 

 

9 tháng 2 2023

a)

\(x=-2\) là nghiệm của phương trình

\(\Rightarrow\left(-2\right)^2-\left(-2\right).\left(m-1\right).\left(-2\right)-3=0\)

\(\Leftrightarrow4+4\left(m-1\right)-3=0\)

\(\Leftrightarrow4\left(m-1\right)=-1\)

\(\Leftrightarrow m-1=-\dfrac{1}{4}\)

\(\Leftrightarrow m=\dfrac{3}{4}\)

\(x^2-2\left(m-1\right)x-3=0\)

\(\Leftrightarrow x^2+\dfrac{1}{2}x-3=0\)

\(\Leftrightarrow2x^2+x-6=0\)

\(\Leftrightarrow\left(x+2\right)\left(2x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+2=0\\2x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=\dfrac{3}{2}\end{matrix}\right.\)

b)

\(\Delta'=\left(m-1\right)^2+12x>0\forall m\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm phân biệt

Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-3\end{matrix}\right.\)

Có:

 \(Q=x_1^3x_2+x_1x_2^3-5x_1x_2\)

\(=x_1x_2.\left[\left(x_1+x_2\right)^2-2x_1x_2\right]-5x_1x_2\)

\(=-3\left[4\left(m-1\right)^2+6\right]+15\)

\(=-12\left(m-1\right)^2-3\)

Mà \(-12\left(m-1\right)^2\le0\)

\(\Rightarrow-12\left(m-1\right)^2-3\le-3\)

\(Max_Q=-3\Leftrightarrow m-1=0\Leftrightarrow m=1\).

 

9 tháng 2 2023

`a)` Thay `x=-2` vào ptr có:

   `(-2)^2-2(m-1).(-2)-3=0<=>m=3/4`

Thay `m=3/4` vào ptr có: `x^2-2(3/4-1)x-3=0<=>x^2+1/2x-3=0`

             `<=>2x^2+x-6=0<=>(x+2)(2x-3)=0<=>[(x=-2),(x=3/2):}`

`b)` Ptr có nghiệm `<=>\Delta' >= 0`

            `<=>[-(m-1)]^2+3 >= 0<=>(m-1)^2+3 >= 0` (LĐ `AA m`)

`=>` Áp dụng Viét có: `{(x_1+x_2=[-b]/a=2m-2),(x_1 .x_2=c/a=-3):}`

Có:`Q=x_1 ^3 x_2+x_1 x_2 ^3 -5x_1 x_2`

`<=>Q=x_1 x_2(x_1 ^2+x_2 ^2)-5x_1 x_2`

`<=>Q=x_1 x_2[(x_1+x_2)^2-2x_1 x_2]-5x_1 x_2`

`<=>Q=-3[(2m-2)^2-2.(-3)]-5.(-3)`

`<=>Q=-3(2m-2)^2-18+15`

`<=>Q=-3(2m-2)^2-3`

Vì `-3(2m-2)^2 <= 0<=>-3(2m-2)^2-3 <= -3 AA m`

  `=>Q <= -3 AA m`

Dấu "`=`" xảy ra `<=>2m-2=0<=>m=1`

Vậy GTLN của `Q` là `-3` khi `m=1`

AH
Akai Haruma
Giáo viên
8 tháng 5 2022

Lời giải:
a. Khi $m=1$ thì pt trở thành:
$x^2-3=0$

$\Leftrightarrow x^2=3\Leftrightarrow x=\pm \sqrt{3}$

b.

Để pt có 2 nghiệm $x_1,x_2$ thì:
\(\left\{\begin{matrix} m\neq 0\\ \Delta'=(m-1)^2-m(m-4)=2m+1\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m\neq 0\\ m\geq \frac{-1}{2}\end{matrix}\right.\)

Áp dụng định lý Viet, với $x_1,x_2$ là nghiệm của pt thì:
$x_1+x_2=\frac{2(m-1)}{m}$
$x_1x_2=\frac{m-4}{m}$

Khi đó:
$x_1+2x_2=3$

$\Leftrightarrow x_2=3-(x_1+x_2)=3-\frac{2(m-1)}{m}=\frac{m+2}{m}$

$x_1=\frac{2(m-1)}{m}-x_2=\frac{m-4}{m}$

$\frac{m-4}{m}=x_1x_2=\frac{m-4}{m}.\frac{m+2}{m}$
$\Leftrightarrow \frac{m-4}{m}(\frac{m+2}{m}-1)=0$

$\Leftrightarrow \frac{m-4}{m}.\frac{2}{m}=0$

$\Leftrightarrow m=4$ (tm)

a) Thay \(a=0\) vào phương trình, ta được:

 \(x^2-2x-3=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

Vậy ...

b) Ta có: \(\Delta'=4-3a\) 

Để phương trình có 2 nghiệm x1 và x2 \(\Leftrightarrow\Delta'\ge0\) \(\Leftrightarrow a\le\dfrac{4}{3}\)

 Vậy ...

c) Phương trình có nghiệm bằng -1 

\(\Rightarrow1+2\left(1-a\right)+a^2+a-3=0\) 

\(\Leftrightarrow a^2-a=0\) \(\Rightarrow\left[{}\begin{matrix}a=1\\a=0\end{matrix}\right.\)

Vậy ... 

17 tháng 1 2021

pt: \(x^2+2\left(a-1\right)x+a^2+a-3=0\) (1)

a) khi a=0 pt(1) \(\Leftrightarrow x^2-2x-3=0\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=3\end{matrix}\right.\)

b) \(\Delta'=b'^2-ac=\left(a-1\right)^2-\left(a^2+a-3\right)=-3a+4\)

phương trình có 2 nghiệm phân biệt khi \(\Delta'>0\Leftrightarrow-3a+4>0\Leftrightarrow a< \dfrac{4}{3}\)

c) pt(1) có nghiệm x=-1 \(\Leftrightarrow\left(-1\right)^2+2\left(a-1\right).\left(-1\right)+a^2+a-3=0\)

\(\Leftrightarrow a^2-a=0\Leftrightarrow\left[{}\begin{matrix}a=0\\a=1\end{matrix}\right.\)