K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2016

BH =x<0

HC = 25-x

AH2=BH .HC

AH2 = x(25-x)

144=25x-x2

X2=25x+144

x2-25x+144

x2-9x-16x+144=0

(x-16)(x-9)=0

suy ra x=16;x=9

nếu BH =16 suy ra HC =25-16=9

AB2=BC.BH

AB2=25.16

AB2=căn 400=20

nếu BH =9 suy ra 25-9=16

AB2=25.9

AB=căn 225=15

 

25 tháng 2 2021

a/

∆ABC vuông tại A, AH, vuông góc BC

=> AB.AH = HB.AC

=> AB = 15Ta có: BC^2 = AB^2 + AC^2=> BC = 25=> HB = BC - BH = 25-9 = 16

 

a) Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AH^2+BH^2=AB^2\)

\(\Leftrightarrow AB^2=9^2+12^2=225\)

hay AB=15(cm)

Vậy: AB=15cm

f) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB\cdot HC=12^2=144\)(1)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên BH+CH=25

hay BH=25-CH(2)

Thay (2) vào (1), ta được:

\(HC\left(25-HC\right)=144\)

\(\Leftrightarrow HC^2-25HC+144=0\)

\(\Leftrightarrow\left[{}\begin{matrix}HC=16\\HC=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}HB=9\\HB=16\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}AB\in\left\{15;20\right\}\\AC\in\left\{20;15\right\}\end{matrix}\right.\)

Ta có: ΔABC đều(gt)mà AH là đường cao ứng với cạnh BC(gt)

nên AH là đường trung tuyến ứng với cạnh BC(Định lí tam giác đều)

hay H là trung điểm của BC

\(\Leftrightarrow BH=\dfrac{BC}{2}=\dfrac{3}{2}=1.5\left(cm\right)\)

Xét ΔABH vuông tại H có 

\(\widehat{ABH}+\widehat{BAH}=90^0\)(hai góc nhọn phụ nhau)

\(\Leftrightarrow\widehat{BAH}=90^0-60^0\)

hay \(\widehat{BAH}=30^0\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AH^2+BH^2=AB^2\)

\(\Leftrightarrow AH^2=AB^2-BH^2=3^2-1.5^2=6.75\)

hay \(AH=\dfrac{3\sqrt{3}}{2}\left(cm\right)\)

Vậy: \(AH=\dfrac{3\sqrt{3}}{2}\left(cm\right)\)

3 tháng 9 2021

xét tg AHC có H=90 độ=> AC2=AH2+HC2( dl Py-ta-go)

=> HC2= AC2-AH2=> HC2= 92,16=9,6 cm

Xét tg ABC và tg HAC có H=A=90 độ

                                         C chung 

=> tg ABC~tg HAC(g,g)

=> AH/AB=AC/HC

=>  7,2/AB= 12/9,6=> AB= 7,2.12:9,6=9 cm

Xét tg ABC có A=90 độ(gt)

=> CB2=AB2+AC2(dl PY-ta -go)

=> BC2=225=> BC=15 cm

Mà BH+HC=BC=> BH=BC-HC=> BH=15-9,6=5,4 cm