K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2016

BH =x<0

HC = 25-x

AH2=BH .HC

AH2 = x(25-x)

144=25x-x2

X2=25x+144

x2-25x+144

x2-9x-16x+144=0

(x-16)(x-9)=0

suy ra x=16;x=9

nếu BH =16 suy ra HC =25-16=9

AB2=BC.BH

AB2=25.16

AB2=căn 400=20

nếu BH =9 suy ra 25-9=16

AB2=25.9

AB=căn 225=15

 

f) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB\cdot HC=12^2=144\)(1)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên BH+CH=25

hay BH=25-CH(2)

Thay (2) vào (1), ta được:

\(HC\left(25-HC\right)=144\)

\(\Leftrightarrow HC^2-25HC+144=0\)

\(\Leftrightarrow\left[{}\begin{matrix}HC=16\\HC=9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}HB=9\\HB=16\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}AB\in\left\{15;20\right\}\\AC\in\left\{20;15\right\}\end{matrix}\right.\)

3 tháng 9 2021

xét tg AHC có H=90 độ=> AC2=AH2+HC2( dl Py-ta-go)

=> HC2= AC2-AH2=> HC2= 92,16=9,6 cm

Xét tg ABC và tg HAC có H=A=90 độ

                                         C chung 

=> tg ABC~tg HAC(g,g)

=> AH/AB=AC/HC

=>  7,2/AB= 12/9,6=> AB= 7,2.12:9,6=9 cm

Xét tg ABC có A=90 độ(gt)

=> CB2=AB2+AC2(dl PY-ta -go)

=> BC2=225=> BC=15 cm

Mà BH+HC=BC=> BH=BC-HC=> BH=15-9,6=5,4 cm

NV
7 tháng 9 2021

Trong tam giác vuông ABC:

\(cosB=\dfrac{AB}{BC}\Rightarrow AB=BC.cosB\)

Trong tam giác vuông ABH:

\(sinB=\dfrac{AH}{AB}\Rightarrow AH=AB.sinB=BC.sinB.cosB=6.sin55^0.cos55^0\approx2,8\left(cm\right)\)

\(cosB=\dfrac{BH}{AB}\Rightarrow BH=AB.cosB=BC.\left(cosB\right)^2=6.\left(cos55^0\right)^2\approx1,2\left(cm\right)\)

\(CH=BC-BH=6-1,2=4,8\left(cm\right)\)

NV
7 tháng 9 2021

undefined

26 tháng 11 2021

đoạn AH á cậu

26 tháng 11 2021

\(HC=BC-BH=8\left(cm\right)\\ \text{Áp dụng HTL: }AH^2=BH\cdot HC=24\left(cm\right)\\ \Rightarrow AH=2\sqrt{6}\left(cm\right)\)

Ta có: \(\dfrac{AB}{AC}=\sqrt{3}\)

\(\Leftrightarrow HB=3\cdot HC\)

Ta có: \(AH^2=HB\cdot HC\)

\(\Leftrightarrow3\cdot HC=12\)

hay HC=4(cm)

\(\Leftrightarrow HB=\dfrac{4}{3}\left(cm\right)\)

\(\Leftrightarrow BC=\dfrac{16}{3}\left(cm\right)\)

Xét ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=\dfrac{8}{3}\left(cm\right)\\AC=\dfrac{8\sqrt{3}}{3}\left(cm\right)\end{matrix}\right.\)

13 tháng 9 2016

AB=21/(3+4)x3=9 cm

AC=21-9=12cm

Tự kẻ hình bạn nhé =)))

Áp dụng định lí Pitago vào tam giác ABC , có

AB^2+AC^2=BC^2

=>thay số vào, tính được BC=15cm

Áp dụng hệ thức giữa cạnh và đường cao trong tg vuông, có:

AB^2=BHxBC

=>BH=81/15=5.4cm

=>CH=15-5.4=9.6cm

AH^2=BHxCH=5.4x9.6=51.84cm