Cho tam giác ABC, kẻ phân giác AD của góc A (D thuộc BC). Từ C kẻ CX song song với AD cắt BA ở E. Vẽ phân giác AF của góc CAE (F thuộc CE). Chứng minh rằng
a) ACE= AEC
b)AE vuông góc với CE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có tam giác abc cân tại a
mà ad là tia phân giác góc bac
suy ra ad là dường vuông góc suy ra ad vuông góc bc
b)ta có af là tia phân giác ead thì suy ra góc fac =góc eac chia 2
tương tự với ad suy ra dac+fac=180/2=90
suy ra af // bc do cùng vuông góc với ad
c) ta có fac=acd do slt,af//bc
mà fac=fae do à là tia phân giác
abc=acb do tam giác cân
suy ra fae=abc
xét tam giác abd và eaf (c.g.c) suy ra ad=fe
d)ta có ef//ad do cùng vuông góc với af
mà fc//ad do cùng vuông góc với af
suy ra e,f,c thẳng hàng
a/
Ta có: AD //CE => AEC= BAD ( đồng vị) (1)
DAC= ACE ( sole trong) (2)
và AD là tia phân giác của góc BAC => BAD=DAC (3)
Từ (1), (2),(3) => ACE=AEC
b/
Ta có:
ABC + EAC=180 ( kề bù)
và AD là tia phân giác của ABC => DAC= \(\frac{ABC}{2}\)
AF là tia phân giác của EAC => FAC= \(\frac{EAC}{2}\)
Ta có: DAF= DAC+EAC
= \(\frac{ABC}{2}+\frac{EAC}{2}\)
= \(\frac{180}{2}\)
= 90
và AD // CE => DAF=AFE=90 ( sole trong)
=> AF vuông góc với CE
a: Xét ΔABD và ΔACE có
AB=AC
góc ABD=góc ACE
BD=CE
=>ΔADB=ΔAEC
=>AD=AE
=>ΔADE cân tại A
b,c: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có
AB=AC
góc HAB=góc KAC
=>ΔAHB=ΔAKC
=>BH=CK
Xét ΔAMB vuông tại M và ΔANC vuông tại N có
AB=AC
góc MAB=góc NAC(góc MAB=góc MAC+góc BAC;góc NAC=góc NAB+góc BAC;gócMAC=góc NAB)
=>ΔAMB=ΔANC
=>BM=CN
d: Xét ΔADE có AH/AD=AK/AE
nên HK//DE
=>HK//BC
a: Xét ΔCAE và ΔCDE có
CA=CD
\(\widehat{ACE}=\widehat{DCE}\)
CE chung
Do đó: ΔCAE=ΔCDE
Làm đc bài 2 chưa bn
tao dien