P=(6x-5y-16)^2+x^2+y^2+2xy+x+y+2.Tìm giá trị nhỏ nhất của biểu thức
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có D=x^2 +2.y^2 -2xy+4x-5y-12
<=>D=(x^2 +y^2 +4 -2xy-4y+4x) +[y^2 -2.y.(1/2) +1/4] -1/4+8
<=>D=(x-y+2)^2 +(y-1/2)^2 +31/4
mà (x-y+2)^2 >= 0 và (y-1/2)^2>=0 nên (x-y+2)^2 +(y-1/2)^2 +31/4 >= 31/4
dấu '=' xảy ra khi :y-1/2=0 và x-y+2=0 <=> y=1/2 và x=-3/2
vậy GTNN của D là 31/4 khi x=-3/2, y=1/2
\(A=\left(x^2+2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{5}{4}=\left(x+\dfrac{3}{2}\right)^2-\dfrac{5}{4}\ge-\dfrac{5}{4}\\ A_{min}=-\dfrac{5}{4}\Leftrightarrow x=-\dfrac{3}{2}\\ B=\left(x^2+2xy+y^2\right)+\left(x^2+6x+9\right)+3\\ B=\left(x+y\right)^2+\left(x+3\right)^2+3\ge3\\ B_{min}=3\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=-3\end{matrix}\right.\\ C=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1\le1\\ C_{max}=1\Leftrightarrow x=1\)
\(H=x^2+2xy+y^2+2x+2y+x^2+4x+2019=\left(x+y\right)^2+2\left(x+y\right)+\left(x+2\right)^2+2015\)
\(=\left(x+y+1\right)^2+\left(x+2\right)^2+2014\ge2014\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=-2;y=1\)
\(I=\left(1-x\right)^2+\left(-2-y\right)^2+\left(x+y\right)^2\ge\frac{\left(1-x-2-y+x+y\right)^2}{3}=\frac{1}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(1-x=-2-y=x+y\)\(\Leftrightarrow\)\(x=\frac{4}{3};y=\frac{-5}{3}\)
E = 2x^2 - 5x -2 = 2( x^2 -5/2x -1) = 2(x^2 - 2.x.5/4 +25/16 - 41/16) = 2(x - 5/4 )^2 + 41/8
Vậy GTNN của biểu thức là 41/8 tại x = 5/4
F = x^2 + 5y^2 + 2xy -y +3 = (x^2 + 2xy +y^2) + (4y^2 - 2.2y.1/4 + 1/16) +47/16
(x + y)^2 + (2y - 1/4)^2 + 47/16
Vậy GTNN của BT là 47/16 tại x = y = 1/8
1. \(A=2x^2-6x-2xy+y^2+10\)
\(\Leftrightarrow A=\left(x^2-2xy+y^2\right)+\left(x^2-6x+9\right)+1\)
\(\Leftrightarrow A=\left(x-y\right)^2+\left(x-3\right)^2+1\)
Vì \(\left(x-y\right)^2\ge0\) ; \(\left(x-3\right)^2\ge0\)\(\forall x;y\)
\(\Rightarrow A=\left(x-y\right)^2+\left(x-3\right)^2+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(x-3\right)^2=0\end{matrix}\right.\Leftrightarrow x=y=3\)
Vậy minA = 1 \(\Leftrightarrow x=y=3\)
2. \(A=5+2xy+14y-x^2-5y^2-2x\)
\(\Leftrightarrow A=-\left(x^2-2xy+y^2+2x-2y+1\right)-\left(4y^2-12y+9\right)+15\)
\(\Leftrightarrow A=-\left(x-y+1\right)^2-\left(2y-3\right)^2+15\)
Vì \(\left\{{}\begin{matrix}\left(x-y+1\right)^2\ge0\\\left(2y-3\right)^2\ge0\end{matrix}\right.\)\(\forall x;y\)
\(\Rightarrow A=-\left(x-y+1\right)^2-\left(2y-3\right)^2+15\le15\)
Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y+1\right)^2=0\\\left(2y-3\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y=-1\\y=\frac{3}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{3}{2}\end{matrix}\right.\)
Vậy maxA = 15 \(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1}{2}\\y=\frac{3}{2}\end{matrix}\right.\)
1. A=2x2−6x−2xy+y2+10A=2x2−6x−2xy+y2+10
⇔A=(x2−2xy+y2)+(x2−6x+9)+1⇔A=(x2−2xy+y2)+(x2−6x+9)+1
⇔A=(x−y)2+(x−3)2+1⇔A=(x−y)2+(x−3)2+1
Vì (x−y)2≥0(x−y)2≥0 ; (x−3)2≥0(x−3)2≥0∀x;y∀x;y
⇒A=(x−y)2+(x−3)2+1≥1⇒A=(x−y)2+(x−3)2+1≥1
Dấu "=" xảy ra ⇔{(x−y)2=0(x−3)2=0⇔x=y=3⇔{(x−y)2=0(x−3)2=0⇔x=y=3
Vậy minA = 1 ⇔x=y=3⇔x=y=3
2. A=5+2xy+14y−x2−5y2−2xA=5+2xy+14y−x2−5y2−2x
⇔A=−(x2−2xy+y2+2x−2y+1)−(4y2−12y+9)+15⇔A=−(x2−2xy+y2+2x−2y+1)−(4y2−12y+9)+15
⇔A=−(x−y+1)2−(2y−3)2+15⇔A=−(x−y+1)2−(2y−3)2+15
Vì {(x−y+1)2≥0(2y−3)2≥0{(x−y+1)2≥0(2y−3)2≥0∀x;y∀x;y
⇒A=−(x−y+1)2−(2y−3)2+15≤15⇒A=−(x−y+1)2−(2y−3)2+15≤15
Dấu "=" xảy ra ⇔{(x−y+1)2=0(2y−3)2=0⇔{x−y=−1y=32⇔{x=12y=32⇔{(x−y+1)2=0(2y−3)2=0⇔{x−y=−1y=32⇔{x=12y=32
Vậy maxA = 15 ⇔{x=12y=32
\(x^2+2xy+6x+6y+2y^2+8=0\\ \Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+y^2=-8\)
Ta có \(y^2\ge0\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)\le-8\)
\(\Leftrightarrow\left(x+y\right)^2+6\left(x+y\right)+9\le1\\ \Leftrightarrow\left(x+y+3\right)^2\le1\\ \Leftrightarrow\left|x+y+3\right|\le1\\ \Leftrightarrow-1\le x+y+3\le1\\ \Leftrightarrow2012\le B\le2014\)
\(B_{min}=2012\Leftrightarrow\left\{{}\begin{matrix}x+y+2016=2012\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-4\\y=0\end{matrix}\right.\)
\(B_{max}=2014\Leftrightarrow\left\{{}\begin{matrix}x+y+2016=2014\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=0\end{matrix}\right.\)
có làm mới có ăn nha em