K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2016

dẽ mà giúp mình bài này đi

cho tam giac abc . co canh bc=12cm, duong cao ah=8cm

a> tinh s tam giac abc

b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách

c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame

\(\left(m+n\right)\left(m^2-mn+n^2\right)\)

\(=m^3-m^2n+mn^2-m^2n-mn^2+n^3\)

\(=m^3-n^3\)

29 tháng 7 2016

a/ \(\left(m+n\right)\left(m^3-mn+n^2\right)=m^3+n^3\)

b/ \(\left(a-b-c\right)^2-\left(a-b+c\right)^2=\left(a-b-c-a+b-c\right)\left(a-b-c+a-b+c\right)=-2c\left(2a-2b\right)=-4c\left(a-b\right)\)c/ 

\(\left(1+x+x^2\right)\left(1-x\right)\left(1+x\right)\left(1-x+x^2\right)=\left(\left(1+x+x^2\right)\left(1-x\right)\right)\left(\left(1-x+x^2\right)\left(1+x\right)\right)=\left(1-x^3\right)\left(1+x^3\right)=1-x^6\)

11 tháng 7 2019

a) m3+n3

b)  (a -b-c+a-b+c)(a-b-c-a+b-c)

= -4c(a-b)

c) (1-x3)(1+x3)

=1-x6

20 tháng 4 2017

a) (x2 + 2xy + y2) : (x + y) = (x + y)2 : (x + y) = x + y.

b) (125x3 + 1) : (5x + 1) = [(5x)3 + 1] : (5x + 1)

= (5x)2 – 5x + 1 = 25x2 – 5x + 1.

c) (x2 – 2xy + y2) : (y – x) = (x – y)2 : [-(x – y)] = - (x – y) = y – x

Hoặc (x2 – 2xy + y2) : (y – x) = (y2 – 2xy + x2) : (y – x)

= (y – x)2 : (y – x) = y - x.


20 tháng 4 2017

Bài giải:

a) (x2 + 2xy + y2) : (x + y) = (x + y)2 : (x + y) = x + y.

b) (125x3 + 1) : (5x + 1) = [(5x)3 + 1] : (5x + 1)

= (5x)2 – 5x + 1 = 25x2 – 5x + 1.

c) (x2 – 2xy + y2) : (y – x) = (x – y)2 : [-(x – y)] = - (x – y) = y – x

Hoặc (x2 – 2xy + y2) : (y – x) = (y2 – 2xy + x2) : (y – x)

= (y – x)2 : (y – x) = y - x.

26 tháng 12 2021

b: \(=2x^2-3x+10x-15=2x^2+7x-15\)

11 tháng 9 2017

Bài 1:

a, Ta có:

\(\left(a+b+c\right)^2-\left(ab+bc+ca\right)=0\Leftrightarrow a^2+b^2+c^2+ab+bc+ca=0\)\(\Leftrightarrow2a^2+2b^2+2c^2+2ab+2bc+2ca=0\)

\(\Leftrightarrow\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2=0\Leftrightarrow a+b=b+c=c+a=0\)

\(\Leftrightarrow a=b=c=0\)

Vậy điều kiện để phân thức M được xác định là a, b, c không đồng thời = 0

b, Ta có:

\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)

Đặt: \(a^2+b^2+c^2=x,ab+bc+ca=y\)

=> \(\left(a+b+c\right)^2=x+2y\)

Ta cũng có:

\(M=\dfrac{x\left(x+2y\right)+y^2}{x+2y-y}=\dfrac{x^2+2xy+y^2}{x+y}=\dfrac{\left(x+y\right)^2}{x+y}=x+y\)

\(=a^2+b^2+c^2+ab+bc+ca\)

27 tháng 9 2018

a, (y-3)(y+3)=y2-32=y2-9 (hằng đẳng thức)

b, (a-b-c)2 - (a-b+c)2= ((a-b-c)-(a-b+c)).((a-b-c)+(a-b+c))

=(a-b-c-a+b-c).(a-b-c+a-b+c)=-2c+2a-2b

c, (m+n)(m2 -mn+n2)=m3+n3(hằng đẳng thức)

d

27 tháng 9 2018

mình bận hồi mình làm tiếp

26 tháng 12 2021

c: \(=x^2+6xy+9y^2\)

e: \(=x^4-4y^2\)

23 tháng 6 2017

a) \(x\left(x-1\right)\left(x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)

\(=\left(x+1\right)\cdot\left[x\cdot\left(x-1\right)-\left(x^2-x+1\right)\right]\)

\(=\left(x+1\right)\left(x^2-x-x^2+x-1\right)\)

\(=\left(x+1\right)\cdot\left(-1\right)\)

\(=-1\left(x+1\right)\)

b) \(\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)+3\left(x+4\right)\left(x-4\right)\)

\(=x^3-3x^2+3x-1-\left(x^3+8\right)+\left(3x+12\right)\left(x-1\right)\)

\(=x^3-3x^2+3x-1-\left(x^3+8\right)+3x^2-3x+12x-12\)

\(=x^3-1-x^3-8+12x-12\)

\(=-21+12x\)

c) \(3x^2\left(x+1\right)\left(x-1\right)+\left(x^2-1\right)^3-\left(x^2-1\right)\left(x^4+x^2+1\right)\)

\(=3x^2\left(x^2-1\right)+x^6-3x^4+3x^2-1-\left(x^6-1\right)\)

\(=3x^4-3x^2+x^6-3x^4+3x^2-1-x^6+1\)

\(=0\)

24 tháng 6 2017

câu b bạn làm sai rồi í!

25 tháng 7 2017

143. a) \(-6x^n.y^n.\left(-\dfrac{1}{18}x^{2-n}+\dfrac{1}{72}y^{5-n}\right)\)

\(=-6.\left(-\dfrac{1}{18}\right)x^n.x^{2-n}.y^n+\left(-6\right).\dfrac{1}{27}x^n.y^n.y^{5-n}\)

\(=\dfrac{1}{3}x^{n+2-n}y^n-\dfrac{2}{9}x^n.y^{n+5-n}\)

\(=\dfrac{1}{3}x^2y^n-\dfrac{2}{9}x^ny^5\)

b) Ta có: \(\left(5x^2-2y^2-2xy\right)\left(-xy-x^2+7y^2\right)\)

\(=5x^2\left(-xy\right)+5x^2.\left(-x^2\right)+5x^2.7y^2-2y^2.\left(-xy\right)-2y^2.\left(-x^2\right)-2y^2.7y^2-2xy.\left(-xy\right)-2xy\left(-x^2\right)-2xy.7y^2\)

\(=-5x^3y-5x^4+35x^2y^2+2xy^3+2x^2y^2-14y^4+2x^2y^2+2x^3y-14xy^3\)

Rút gọn các đa thức đồng dạng, ta có kết quả:

\(-5x^4-3x^3y+39x^2y^2-12xy^3-14y^4\)

Kết quả đã được xếp theo lũy thừa giảm dần của x