Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\left(m+n\right)\left(m^3-mn+n^2\right)=m^3+n^3\)
b/ \(\left(a-b-c\right)^2-\left(a-b+c\right)^2=\left(a-b-c-a+b-c\right)\left(a-b-c+a-b+c\right)=-2c\left(2a-2b\right)=-4c\left(a-b\right)\)c/
\(\left(1+x+x^2\right)\left(1-x\right)\left(1+x\right)\left(1-x+x^2\right)=\left(\left(1+x+x^2\right)\left(1-x\right)\right)\left(\left(1-x+x^2\right)\left(1+x\right)\right)=\left(1-x^3\right)\left(1+x^3\right)=1-x^6\)
a) m3+n3
b) (a -b-c+a-b+c)(a-b-c-a+b-c)
= -4c(a-b)
c) (1-x3)(1+x3)
=1-x6
a) (x2 + 2xy + y2) : (x + y) = (x + y)2 : (x + y) = x + y.
b) (125x3 + 1) : (5x + 1) = [(5x)3 + 1] : (5x + 1)
= (5x)2 – 5x + 1 = 25x2 – 5x + 1.
c) (x2 – 2xy + y2) : (y – x) = (x – y)2 : [-(x – y)] = - (x – y) = y – x
Hoặc (x2 – 2xy + y2) : (y – x) = (y2 – 2xy + x2) : (y – x)
= (y – x)2 : (y – x) = y - x.
Bài giải:
a) (x2 + 2xy + y2) : (x + y) = (x + y)2 : (x + y) = x + y.
b) (125x3 + 1) : (5x + 1) = [(5x)3 + 1] : (5x + 1)
= (5x)2 – 5x + 1 = 25x2 – 5x + 1.
c) (x2 – 2xy + y2) : (y – x) = (x – y)2 : [-(x – y)] = - (x – y) = y – x
Hoặc (x2 – 2xy + y2) : (y – x) = (y2 – 2xy + x2) : (y – x)
= (y – x)2 : (y – x) = y - x.
Bài 1:
a, Ta có:
\(\left(a+b+c\right)^2-\left(ab+bc+ca\right)=0\Leftrightarrow a^2+b^2+c^2+ab+bc+ca=0\)\(\Leftrightarrow2a^2+2b^2+2c^2+2ab+2bc+2ca=0\)
\(\Leftrightarrow\left(a+b\right)^2+\left(b+c\right)^2+\left(c+a\right)^2=0\Leftrightarrow a+b=b+c=c+a=0\)
\(\Leftrightarrow a=b=c=0\)
Vậy điều kiện để phân thức M được xác định là a, b, c không đồng thời = 0
b, Ta có:
\(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)
Đặt: \(a^2+b^2+c^2=x,ab+bc+ca=y\)
=> \(\left(a+b+c\right)^2=x+2y\)
Ta cũng có:
\(M=\dfrac{x\left(x+2y\right)+y^2}{x+2y-y}=\dfrac{x^2+2xy+y^2}{x+y}=\dfrac{\left(x+y\right)^2}{x+y}=x+y\)
\(=a^2+b^2+c^2+ab+bc+ca\)
a) \(x\left(x-1\right)\left(x+1\right)-\left(x+1\right)\left(x^2-x+1\right)\)
\(=\left(x+1\right)\cdot\left[x\cdot\left(x-1\right)-\left(x^2-x+1\right)\right]\)
\(=\left(x+1\right)\left(x^2-x-x^2+x-1\right)\)
\(=\left(x+1\right)\cdot\left(-1\right)\)
\(=-1\left(x+1\right)\)
b) \(\left(x-1\right)^3-\left(x+2\right)\left(x^2-2x+4\right)+3\left(x+4\right)\left(x-4\right)\)
\(=x^3-3x^2+3x-1-\left(x^3+8\right)+\left(3x+12\right)\left(x-1\right)\)
\(=x^3-3x^2+3x-1-\left(x^3+8\right)+3x^2-3x+12x-12\)
\(=x^3-1-x^3-8+12x-12\)
\(=-21+12x\)
c) \(3x^2\left(x+1\right)\left(x-1\right)+\left(x^2-1\right)^3-\left(x^2-1\right)\left(x^4+x^2+1\right)\)
\(=3x^2\left(x^2-1\right)+x^6-3x^4+3x^2-1-\left(x^6-1\right)\)
\(=3x^4-3x^2+x^6-3x^4+3x^2-1-x^6+1\)
\(=0\)
a, (y-3)(y+3)=y2-32=y2-9 (hằng đẳng thức)
b, (a-b-c)2 - (a-b+c)2= ((a-b-c)-(a-b+c)).((a-b-c)+(a-b+c))
=(a-b-c-a+b-c).(a-b-c+a-b+c)=-2c+2a-2b
c, (m+n)(m2 -mn+n2)=m3+n3(hằng đẳng thức)
d
a) \(\left(x^2-2x+2\right)\left(x-2\right)\left(x^2-2x+2\right)\left(x+2\right)\)
\(=\left(x^3-2x^2-2x^2+4x+2x-4\right)\left(x^3+2^3\right)\)
\(=\left(x^3-4x^2+6x-4\right)\left(x^3+8\right)\)
\(=x^6+8x^3-4x^5-32x^2+6x^4+48x-4x^3-32\)
\(=x^6-4x^5+4x^3-32x^2+48x-32\)
b) \(\left(x+1\right)^3+\left(x-1\right)^3+x^3-3x\left(x+1\right)\left(x-1\right)\)
\(=\left(x+1+x-1\right)\left[\left(x+1\right)^2-\left(x+1\right)\left(x-1\right)+\left(x-1\right)^2\right]+x^3-3x\left(x^2-1\right)\)
\(=2x\left[\left(x^2+2x+1\right)-\left(x^2-1\right)+\left(x^2-2x+1\right)\right]+x^3-\left(3x^3-3x\right)\)
\(=2x\left(x^2+2x+1-x^2+1+x^2-2x+1\right)+x^3-3x^3+3x\)
\(=2x\left(x^2+3\right)+x^3-3x^3+3x\)
\(=2x^3+6x-2x^3+3x\)
\(=9x\)
2 câu kia đợi tí đã nhé!
c) \(\left(a+b+c\right)^2+\left(a+b-c\right)^2+\left(2a-b\right)^2\)
\(=\left(a^2+b^2+c^2+2ab+2bc+2ca\right)+\left(a^2+b^2+c^2+2ab-2bc-2ca\right)+\left(4a^2-4ab+b^2\right)\)
\(=a^2+b^2+c^2+2ab+2bc+2ca+a^2+b^2+c^2+2ab-2bc-2ca+4a^2-4ab+b^2\)
\(=6a^2+3b^2+2c^2\)
d) \(\left(a+b+c\right)^2+\left(a+b-c\right)^2+2\left(a+b\right)^2\)
\(=a^2+b^2+c^2+2ab+2bc+2ca+a^2+b^2+c^2+2ab-2bc-2ca+2a^2+2ab+b^2\)
\(=4a^2+4b^2+2c^2+6ab.\)
dẽ mà giúp mình bài này đi
cho tam giac abc . co canh bc=12cm, duong cao ah=8cm
a> tinh s tam giac abc
b> tren canh bc lay diem e sao cho be=3/4bc. tinh s tam giac abe va s tam giac ace ( bằng nhiều cách
c> lay diem chinh giua cua canh ac va m . tinh s tam giac ame
\(\left(m+n\right)\left(m^2-mn+n^2\right)\)
\(=m^3-m^2n+mn^2-m^2n-mn^2+n^3\)
\(=m^3-n^3\)