chứng minh: 5^2015 + 5^2016 + 5^2017 chia hết cho 31
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a )
Ta có :
\(5^{2017}+5^{2016}+5^{2015}\)
\(=5^{2015}\left(5^2+5+1\right)\)
\(=5^{2015}.31⋮31\left(đpcm\right)\)
b )
Số lượng số dãy số trên là :
\(\left(101-0\right):1+1=102\)( số )
Do \(102⋮2\)nên ta nhóm 2 số liền nhau thành 1 nhóm như sau :
\(\left(1+7\right)+\left(7^2+7^3\right)+...+\left(7^{100}+7^{101}\right)\)
\(=8+7^2\left(1+7\right)+...+7^{100}\left(1+7\right)\)
\(=8+7^2.8+...+7^{100}.8\)
\(=8\left(1+7^2+...+7^{100}\right)⋮8\left(đpcm\right)\)
52017 + 52016 + 52015 = 52015 x ( 52 + 5 + 1) = 52015 x (25 + 6) = 52015 x 31
Vậy 52017 + 52016 + 52015 chia hết cho 31.
Ta có: \(5^3\equiv1\left(mod31\right)\)
=> \(\left(5^3\right)^{671}\equiv1\left(mod31\right)\)
=> \(\begin{cases}\left(5^3\right)^{671}\cdot5^2\equiv25\left(mod31\right)\equiv25\left(mod31\right)\\\left(5^3\right)^{671}\cdot5^3\equiv5^3\left(mod31\right)\equiv1\left(mod31\right)\\\left(5^3\right)^{671}\cdot5^3\cdot5\equiv5^4\left(mod31\right)\equiv5\left(mod31\right)\end{cases}\)
=> \(\begin{cases}5^{2015}\equiv25\left(mod31\right)\\5^{2016}\equiv1\left(mod31\right)\\5^{2017}\equiv5\left(mod31\right)\end{cases}\)
=> \(5^{2015}+5^{2016}+5^{2017}\equiv25+5+1\left(mod31\right)\equiv0\left(mod31\right)\)
Vậy \(5^{2015}+5^{2016}+5^{2017}⋮31\left(đpcm\right)\)
5^2016 + 5^2015 + 5^2014 = 5^2014 ( 5^2 + 5 + 1) = 5^2014 . ( 25 + 5 + 1) = 5^2014 . 3 1 chia hết cho 31
52016 +52015+52014
=52014.52+52014.5+52014.1
=52014.(52+5+1)
=52014.31
=>52016 +52015+52014 chia hết cho 31
a là x và y thuộc nhóm rỗng
b thì =-1+-1+-1+...+-1+2017=-1008+2017=1009
c là vì 4S+1 là 5^2016 chia hết cho 5^2016
vì 6(5+5^2+...+5^2014) chia hết cho 6 và bằng S
Ta có:
20152017 + 20172015
= 20152017 + 1 + 20172015 - 1
= (20152017 + 12017) + (20172015 - 12015)
Do 20152017 + 12017 luôn chia hết cho 2015 + 1 = 2016; 20172015 - 12015 luôn chia hết cho 2017 - 1 = 2016
=> (20152017 + 12017) + (20172015 - 12015) chia hết cho 2016
=> 20152017 + 20172015 chia hết cho 2016 (đpcm)
52016+52015+52014=52014(52+5+1)=52014.31 chia hết cho 31
=>đpcm
1+7+7 mũ 2+7 mũ 3......+7 mũ 100.Tính a,a là tổng dãy số trên
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
ta có :5^2015 + 5^2016 + 5^2017
= 5^2015 x (1 + 5 + 5^2)
= 5^2015 x ( 1 + 5 + 25)
= 5^2015 x 31(VÌ CÓ SÓ 31 NÊN CHIA HẾT CHO 31)
CẢM ƠN BẬN ĐÃ CHO MÌNH 1 KIẾN THỨC MỚI
Ta có :
52015 + 52016 + 52017
= 52015 x (1 + 5 + 52)
= 52015 x (1 + 5 + 25)
= 52015 x 31 chia hết cho 31 (ĐPCM)
Ủng hộ mk nha !!! ^_^