thu gọn biểu thức A= 2+22 + 23+....+299
chứng minh A chia hết cho 7
tìm dư của phép chia A cho 10
tìm dư của phép chia A cho 15
tìm dư của phép chia A cho 31
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=3^2+3^3+3^6+.....+3^{60}\)
\(\Rightarrow3^2B=3^4+3^6+3^8+.....+3^{62}\)
\(\Rightarrow9B-B=\left(3^4+3^6+.....+3^{62}\right)-\left(3^2+3^4+....+3^{60}\right)\)
\(\Rightarrow8B=3^{62}-3^2\)
\(\Rightarrow B=\frac{3^{62}-3^2}{8}\)
a) Số chia cho 4 có thể có dư là: 0; 1; 2; 3
Số chia cho 5 có thể có dư là: 0; 1; 2; 3; 4
Số chia cho 6 có thể có dư là: 0; 1; 2; 3; 4; 5
b) Dạng tổng quát của số chia hết cho 3 là: 3k
Dạng tổng quát của số chia hết cho 3 dư 1 là: 3k + 1
Dạng tổng quát của số chia hết cho 3 dư 2 là: 3k + 2
( Với k ∈ N)
Vì P(x) chia cho đa thức bậc 2 nên dư là đa thức bậc 1
Gọi đa thức ấy là \(ax+b\)
\(\Leftrightarrow P\left(x\right)=\left(x^2-4x+3\right)\cdot a\left(x\right)+ax+b\\ \Leftrightarrow P\left(x\right)=\left(x-1\right)\left(x-3\right)\cdot a\left(x\right)+ax+b\)
\(P\left(1\right)=3\Leftrightarrow a+b=3\\ P\left(3\right)=7\Leftrightarrow3a+b=7\)
Từ đó ta có hệ \(\left\{{}\begin{matrix}a+b=3\\3a+b=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2a=4\\a+b=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=2\\b=1\end{matrix}\right.\)
Vậy đa thức dư là \(2x+1\)
A = 2 + 22 + 23 +....+ 299
= (2 + 22 + 23) + .... + (297 + 298 + 299)
= 2.(1 + 2 + 4) + .... + 297.(1 + 2 + 4)
= 2.7 + ..... + 297.7
= 7.(2 + .... + 297) chia hết cho 7
A=2+22+23+...+299
A=2(1+2+4)+23(1+2+4)+25(1+2+4)+...+297(1+2+4)
A=2.7+23.7+25.7+...+297.7
A=7(2+23+25+27+...+297)
nên biều thức trên chia hết cho 7
A=2+22+23+...+299
A=2(1+2+4+8+16)+25(1+2+4+8+16)+....+295(1+2+4+8+16)
A=2.31+25.31+...+295.31
A=31(2+25+...+295)
vậy A chia hết cho 31 nên số dư của 31 chia A là 0