Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 2 + 22 + 23 +....+ 299
= (2 + 22 + 23) + .... + (297 + 298 + 299)
= 2.(1 + 2 + 4) + .... + 297.(1 + 2 + 4)
= 2.7 + ..... + 297.7
= 7.(2 + .... + 297) chia hết cho 7
A=2+22+23+...+299
A=2(1+2+4)+23(1+2+4)+25(1+2+4)+...+297(1+2+4)
A=2.7+23.7+25.7+...+297.7
A=7(2+23+25+27+...+297)
nên biều thức trên chia hết cho 7
A=2+22+23+...+299
A=2(1+2+4+8+16)+25(1+2+4+8+16)+....+295(1+2+4+8+16)
A=2.31+25.31+...+295.31
A=31(2+25+...+295)
vậy A chia hết cho 31 nên số dư của 31 chia A là 0
1)
a)\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)
Vì \(3\left(1+3^2+3^4+3^6+.....+3^{1990}\right)\)chia hết cho 3 nên \(B⋮3\)
\(B=3+3^3+3^5+3^7+.....+3^{1991}\)
\(\Leftrightarrow B=\left(3+3^3+3^5+3^7\right)+.....+\left(3^{1988}+3^{1989}+3^{1990}+3^{1991}\right)\)
\(\Leftrightarrow B=3\left(1+3^2+3^4+3^6\right)+.....+3^{1988}\left(1+3^2+3^4+3^6\right)\)
\(\Leftrightarrow B=3.820+.....+3^{1988}.820\)
\(\Leftrightarrow B=3.20.41+.....+3^{1988}.20.41\)
Vì \(3.20.41+.....+3^{1988}.20.41\) chia hết cho 41 nên \(B⋮41\)
a/ \(A=\left(3+3^2+3^3+3^4\right)+\left(3^5+3^6+3^7+3^8\right)+...+\left(3^{57}+3^{58}+3^{59}+3^{60}\right)\)
\(A=3\left(1+3+3^2+3^3\right)+3^5\left(1+3+3^2+3^3\right)+...+3^{57}\left(1+3+3^2+3^3\right)\)
\(A=40\left(3+3^5+3^9+...+3^{53}+3^{57}\right)\)Chia hết cho 4; 5
Ta cũng có
\(A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\)
\(A=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)
\(A=13\left(3+3^4+3^7+...+3^{55}+3^{58}\right)\) chia hết cho 13
b/ \(3A=3^2+3^3+3^4+...+3^{61}\)
\(A=\frac{3A-A}{2}=\frac{3^{61}-3}{2}< 3^{61}\)
a/ \(A=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{59}+3^{60}\right)\)
\(A=12+3^2\left(3+3^2\right)+3^{58}\left(3+3^2\right)=12\left(1+3^2+3^4+...+3^{56}+3^{58}\right)\) chia hết cho 12
c/ \(A=3+\left(3^2+3^3+3^4+...+3^{60}\right)\)
\(A=3+3^2\left(1+3+3^2+...+3^{58}\right)\)
Ta có \(3^2\left(1+3+3^2+...+3^{58}\right)\) chia hết cho 9 => A chia 9 dư 3
d/ Từ câu A ta có
\(A=40\left(3+3^5+3^9+...+3^{53}+3^{57}\right)\)=> chữ số tận cùng của A là 0
a) \(3^2+3^4+3^6+...+3^{60}\)
=> \(\left(3^2+3^4\right)+\left(3^6+3^8\right)+...+\left(3^{59}+3^{60}\right)\)
=> \(\left(9+81\right)+\left(.....9+......1\right)+.....+\left(.....9+.....1\right)\)
=> \(90+...0+...+...0\)chia hết cho 10 (vì hàng đơn vị là 0)
=>A chia hết cho 10
=> đpcm
Chú ý: ...0 là một số tự nhiên có nhiều số phía trước nên mik để dấu (...) ở phía trước của mỗi số nhé
Tk cho mik nha
tiện thể kb vs mik luôn nhé
\(B=3^2+3^3+3^6+.....+3^{60}\)
\(\Rightarrow3^2B=3^4+3^6+3^8+.....+3^{62}\)
\(\Rightarrow9B-B=\left(3^4+3^6+.....+3^{62}\right)-\left(3^2+3^4+....+3^{60}\right)\)
\(\Rightarrow8B=3^{62}-3^2\)
\(\Rightarrow B=\frac{3^{62}-3^2}{8}\)