tìm x,y,z
x : y : z = 2 : 3 : 4 và x - 3y + z = \(\frac{1}{3}\)
giúp mình nhanh nha các bạn, cảm ơn nhiều lắm ạ ^_^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y+1}=\frac{x+y+z}{2\left(x+y+z\right)+3}=x+y+z\)
=> 2(x+y+z) +3 =1=> x+y+z=-1
Luôn đùng Vói mọi x;y;z khác o sao cho x+y+z = -1
b)\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)
x= 3/2 .12=18
y= 4/3 .12=16
z=5/4 .12=15
`@` `\text {Ans}`
`\downarrow`
Ta có:
`x/2 = y/3 = z/4`
`=>`\(\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{z}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{z}{4}=\dfrac{2x-3y+z}{4-9+4}=-\dfrac{3}{-1}=3\)
`=>`\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=3\)
`=>`\(x=2\cdot3=6,\) `y = 3*3 = 9, z = 4*3=12`
Áp dngj tính chất dãy các tỉ số bằng nhau. ta có:
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x+3y-z}{2.2+3.3-4}=\frac{50}{9}\)\(\frac{50}{9}\)
\(\frac{x-1}{2}=\frac{50}{9}\Rightarrow x-1=\frac{50}{9}.2=\frac{100}{9}\)
\(x=\frac{100}{9}+1=\frac{109}{9}\)
\(\frac{y-2}{3}=\frac{50}{9}\Rightarrow y-2=\frac{50}{9}3=\frac{50}{3}\)
\(y=\frac{50}{3}+2=\frac{56}{3}\)
\(\frac{z-3}{4}=\frac{50}{9}\Rightarrow z-3=\frac{50}{9}.4=\frac{200}{9}\)
\(z=\frac{200}{9}+3=\frac{227}{9}\)
Chúc bạn học tốt
\(\)
cái đoạn có hai phân số \(\frac{50}{9}\)bạn bớt đi một cái nha cái đó mik ghi nhầm
a) 5y = 72
=> y = 72/5
2x = 3y
<=> 2x = 3 . 72/5
<=> 2x = 216 / 5
<=> x =108/5
3x - 7y + 5z = -30
<=> 3 . 108/5 - 7. 72/5 + 5z = - 30
<=> 324/5 - 504/5 +5z = -30
<=> 5z = 6
<=> x = 6/5
câu a đoạn cuối z = 6/5 nha
b) x : y : z = 5 : 3 :4
\(\Leftrightarrow\frac{x}{5}=\frac{y}{3}=\frac{z}{4}\Leftrightarrow\frac{x}{5}=\frac{2y}{6}=\frac{z}{4}\)
Áp dụng t/c dãy tỉ số = nhau , ta có
\(\frac{x}{5}=\frac{2y}{6}=\frac{z}{4}=\frac{x+2y-z}{5+6-4}=\frac{-121}{7}\)
=> x =-605/ 7
=> y = -363 / 7
=> z = -484 / 7
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{7}=\dfrac{y}{4}=\dfrac{z}{3}=\dfrac{x-3y+3z}{7-3\cdot4+3\cdot3}=\dfrac{24}{4}=6\)
Do đó: x=42; y=24; z=18
(x - y)^2 + (y - z)^2 + (z - x)^2 = 4(x^2 + y^2 + z^2 - xy - yz - zx)
<=> x^2 - 2xy + y^2 + y^2 - 2yz + z^2 + z^2 - 2zx + x^2 = 4(x^2 + y^2 + z^2 - xy - yz - zx)
<=> 2x^2 + 2y^2 + 2z^2 - 2xy - 2yz - 2xz = 4(x^2 + y^2 + z^2 - xy - yz - zx)
<=> 2(x^2 + y^2 + z^2 - xy - yz - zx) = 4(x^2 + y^2 + z^2 - xy - yz - zx)
<=> 2(x^2 + y^2 + z^2 - xy - yz - zx) = 0
<=> 2x^2 + 2y^2 + 2z^2 - 2xy - 2yz - 2xz = 0
<=> (x^2 - 2xy + y^2) + (y^2 - 2yz + z^2) + (z^2 - 2zx + x^2) = 0
<=> (x - y)^2 + (y - z)^2 + (z - x)^2 = 0
<=> x - y = 0 và y - z = 0 và z - x = 0
<=> x = y và y = z và z = x
<=> x = y = z
\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{6}=\frac{z-3}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{2x-2}{4}=\frac{3y-6}{6}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+6-4}=\frac{2x-2+3y-6-z+3}{4+6-4}\)
\(=\frac{\left(2x+3y-z\right)+\left(-2+6+3\right)}{6}=\frac{50+\left(-5\right)}{6}=\frac{45}{6}=7,5\)
\(\frac{x-1}{2}=7,5\Rightarrow x-1=15\Rightarrow x=16\)
\(\frac{y-2}{3}=7,5\Rightarrow y-2=24,5\Rightarrow y=20,5\)
\(\frac{z-3}{4}=7,5\Rightarrow z-3=30\Rightarrow z=33\)
a) Do \(2x=3y=-2z\) nên \(\frac{2x}{1}=\frac{3y}{1}=\frac{4z}{-2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\frac{2x}{1}=\frac{3y}{1}=\frac{4z}{-2}=\frac{2x-3y+4z}{1-1+\left(-2\right)}=\frac{48}{-2}=-24\) ( do 2x - 3y + 4z = 48 )
Khi đó:
\(\frac{2x}{1}=-24\)\(\Rightarrow2x=-24\)\(\Rightarrow x=\frac{-24}{2}=-12\)
\(\frac{3y}{1}=-24\)\(\Rightarrow3y=-24\)\(\Rightarrow y=\frac{-24}{3}=-8\)
\(\frac{4z}{-2}=-24\)\(\Rightarrow-2z=-24\)\(\Rightarrow z=\frac{-24}{-2}=12\)
Vậy x = -12 ; y = -8 ; z = 12