K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2016

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{6}=\frac{z-3}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{2x-2}{4}=\frac{3y-6}{6}=\frac{z-3}{4}=\frac{\left(2x-2\right)+\left(3y-6\right)-\left(z-3\right)}{4+6-4}=\frac{2x-2+3y-6-z+3}{4+6-4}\)

\(=\frac{\left(2x+3y-z\right)+\left(-2+6+3\right)}{6}=\frac{50+\left(-5\right)}{6}=\frac{45}{6}=7,5\)

\(\frac{x-1}{2}=7,5\Rightarrow x-1=15\Rightarrow x=16\)

\(\frac{y-2}{3}=7,5\Rightarrow y-2=24,5\Rightarrow y=20,5\)

\(\frac{z-3}{4}=7,5\Rightarrow z-3=30\Rightarrow z=33\)

26 tháng 7 2017

\(\frac{x-1}{2}=\frac{y-2}{3}\Rightarrow\frac{3\left(x-1\right)}{2}=y-2\Rightarrow y=\frac{3\left(x-1\right)}{2}+2=\frac{3\left(x-1\right)+4}{2}\)(1)

\(\frac{x-1}{2}=\frac{z-3}{4}\Rightarrow\frac{4\left(x-1\right)}{2}=z-3\Rightarrow z=\frac{4\left(x-1\right)}{2}+3=\frac{4\left(x-1\right)+6}{2}\)(2)

Từ (1) và (2) => 2x+3y-z=\(2x+3\left(\frac{3\left(x-1\right)+4}{2}\right)-\frac{4\left(x-1\right)+6}{2}=50\)

\(\Rightarrow\frac{4x}{2}+\frac{9\left(x-1\right)+12}{2}-\frac{4\left(x-1\right)+6}{2}=50\)

\(\Rightarrow\frac{4x+9x-9+12-4x+4-6}{2}=50\)

\(\Rightarrow9x+1=100\)

\(\Rightarrow9x=99\)

\(\Rightarrow x=11\)

Vì \(y=\frac{3\left(x-1\right)+4}{2}=\frac{3\left(11-1\right)+4}{2}=\frac{34}{2}=17\Leftrightarrow y=17\)

Vì \(z=\frac{4\left(x-1\right)+6}{2}=\frac{4\left(11-1\right)+6}{2}+\frac{46}{2}=23\Leftrightarrow z=23\)

Vậy   x=11

         y=17

         z=23

26 tháng 7 2017

\(\Rightarrow\frac{2\left(x-1\right)}{2.2}=\frac{3\left(y-2\right)}{3.3}=\frac{z-3}{4}\) 

\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}\) 

Áp dụng t/c dãy tỉ số = nhau

\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-3}{4}=\frac{2x-2+3y-6-z+3}{4+9-4}=\frac{50-2-6+3}{9}=\frac{45}{9}=5\) 

\(\Rightarrow\hept{\begin{cases}\frac{x-1}{2}=5\Rightarrow x-1=10\Rightarrow x=11\\\frac{y-2}{3}=5\Rightarrow y-2=15\Rightarrow y=17\\\frac{z-3}{4}=5\Rightarrow z-3=20\Rightarrow z=23\end{cases}}\)

22 tháng 7 2016

Áp dngj tính chất dãy các tỉ số bằng nhau. ta có:

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2x+3y-z}{2.2+3.3-4}=\frac{50}{9}\)\(\frac{50}{9}\)

\(\frac{x-1}{2}=\frac{50}{9}\Rightarrow x-1=\frac{50}{9}.2=\frac{100}{9}\)

                                       \(x=\frac{100}{9}+1=\frac{109}{9}\)

\(\frac{y-2}{3}=\frac{50}{9}\Rightarrow y-2=\frac{50}{9}3=\frac{50}{3}\)

                                        \(y=\frac{50}{3}+2=\frac{56}{3}\)

\(\frac{z-3}{4}=\frac{50}{9}\Rightarrow z-3=\frac{50}{9}.4=\frac{200}{9}\)

                                        \(z=\frac{200}{9}+3=\frac{227}{9}\)      

Chúc bạn học tốt

\(\)

22 tháng 7 2016

cái đoạn có hai phân số \(\frac{50}{9}\)bạn bớt đi một cái nha cái đó mik ghi nhầm

27 tháng 6 2016

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2\left(x-1\right)+3\left(y-2\right)-\left(z-3\right)}{4+9-4}\)

                                                   \(=\frac{2x-2+3y-6-x+3}{9}=\frac{50-5}{9}=5\)

Suy ra: \(x-1=10\Rightarrow x=11\)

           \(y-2=15\Rightarrow y=17\)

             \(z-3=20\Rightarrow z=23\)

27 tháng 6 2016

- Cám ơn bạn nhìu nha

10 tháng 10 2016

Ta có: \(\frac{3x-y}{x+y}=\frac{3}{4}\)

\(\Rightarrow4\left(3x-y\right)=3\left(x+y\right)\)

\(\Rightarrow12x-y=3x+3y\)

\(\Rightarrow12x-3x=y+3y\)

\(\Rightarrow9x=4y\)

\(\Rightarrow\frac{x}{y}=\frac{4}{9}\)

\(\Rightarrow x=4;y=9\)

5 tháng 8 2019

Ta có: 2x + 3y + 5z - 119 = 0

=>  2x + 3y + 5z = 119

 \(\frac{x+2}{3}=\frac{y+3}{5}=\frac{z-4}{7}\Leftrightarrow\frac{2x+4}{6}=\frac{3y+9}{15}=\frac{5z-20}{35}\)

Áp dụng t/c dãy tỉ số bằng nhau, ta có:

\(\frac{2x+4}{6}=\frac{3y+9}{15}=\frac{5z-20}{35}=\frac{2x+4+3y+9+5z-20}{6+15+35}=\frac{119+4+9-20}{56}=\frac{112}{56}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x+2}{3}=2\\\frac{y+3}{5}=2\\\frac{z-4}{7}=2\end{cases}\Rightarrow}\hept{\begin{cases}x+2=6\\y+3=10\\z-4=14\end{cases}}\Rightarrow\hept{\begin{cases}x=4\\y=7\\z=18\end{cases}}\)

Vậy...

7 tháng 11 2021

Ta có:2x+y=z−38⇒2x+y−z=−382x+y=z−38⇒2x+y−z=−38

Vì 3x=4y=5x−3x−4y3x=4y=5x−3x−4y nên 3x=5z−3x−3x3x=5z−3x−3x

⇒3x−5z−6x⇒3x−5z−6x

⇒9x=5z⇒9x=5z

⇒x5=z9⇒x20=z36⇒x5=z9⇒x20=z36(1)

Vì 3x=4y⇒x4=y3⇒x20=z153x=4y⇒x4=y3⇒x20=z15 (2)

Từ (1) và (2)⇒x20=y15=z36⇒x20=y15=z36

Áp dụng tính chất dãy tỉ số bằng nhau:

x20=y15=z36=2x+y−z2.20+15−36=−3819=−2x20=y15=z36=2x+y−z2.20+15−36=−3819=−2

x20=−2⇒x=20.(−2)=−40x20=−2⇒x=20.(−2)=−40

y15=−2⇒y=15.(−2)=−30y15=−2⇒y=15.(−2)=−30

z36=−2⇒z=36.(−2)=−72z36=−2⇒z=36.(−2)=−72

Vậy x=−40;y=−30;z=−72

14 tháng 7 2019

Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\) => \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

   \(\frac{x^2}{4}=\frac{y^2}{9}=\frac{2z^2}{32}=\frac{x^2+y^2-2z^2}{4+9-32}=\frac{76}{-19}=-4\)

=> \(\hept{\begin{cases}\frac{x^2}{4}=-4\\\frac{y^2}{9}=-4\\\frac{2z^2}{32}=-4\end{cases}}\) => \(\hept{\begin{cases}x^2=-4.4=-16\\y^2=-4.9=-36\\z^2=\left(-4.32\right):2=-64\end{cases}}\) => ko có giá trị x,y,z thõa mãn

Ta có: \(-2x=5y\) => \(\frac{x}{5}=\frac{y}{-2}\)

Áp dụng t/c của dãy tỉ số bằng nhau, ta có:

        \(\frac{x}{5}=\frac{y}{-2}=\frac{x+y}{5-2}=\frac{30}{3}=10\)

=> \(\hept{\begin{cases}\frac{x}{5}=10\\\frac{y}{-2}=10\end{cases}}\) => \(\hept{\begin{cases}x=10.5=50\\y=10.\left(-2\right)=-20\end{cases}}\)

Vậy ..

14 tháng 7 2019

\(\frac{x}{-3}=\frac{y}{-7}\Rightarrow\frac{2x}{-6}=\frac{4y}{-28}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{2x}{-6}=\frac{4y}{-28}=\frac{2x+4y}{(-6)+(-28)}=\frac{68}{-34}=-2\)

Vậy : \(\hept{\begin{cases}\frac{x}{-3}=-2\\\frac{y}{-7}=-2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=6\\y=14\end{cases}}\)