Giúp mình giải bài tìm x
16x^3 - 12x^2 + 3x - 7 = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ 3x(12x-4)-9x(4x-3)
=36x2-12x-36x2+27x
=(36x2-36x2)-12x+27x
=15x
b/ x(5-2x)+2x(x-1)
=5x-2x2+2x2-2x
=(5x-2x)-(-2x2+2x2)
=3x
c/ 5x(12x+7)-3x(20x-5)
=60x2+35x-60x2+15x
=(60x2-60x2)+(35x+15x)\
=50x
d/ 3x(2x-7)+2x(5-3x)
=6x2-21x+10x-6x2
=(6x2-6x2)+(10x-21x)
=-11x
e/ đề sai hay sao ý ra số to lắm @@
a) (12x-5)(4x-1)+(3x-7)(1-16x)
= (48x^2 - 12x - 20x + 5) + (3x - 48x^2 - 7 + 112x)
= 48x^2 - 12x - 20x + 5 +3x - 48x^2 -7 + 112x
= 83x-2
những phần sau bạn cứ làm tương tự theo cách nhân đa thức với đa thức và phá ngiawcj là ra nha :0))
a: =>2x^2-2x+2x-2-2x^2-x-4x-2=0
=>-5x-4=0
=>x=-4/5
b: =>6x^2-9x+2x-3-6x^2-12x=16
=>-19x=19
=>x=-1
c: =>48x^2-12x-20x+5+3x-48x^2-7+112x=81
=>83x=83
=>x=1
\(16x^3-12x^2+3x-7=0\)
\(\Leftrightarrow16x^3-16x^2-3x^2+3x+7x^2-7=0\)
\(\Leftrightarrow16x^2\left(x-1\right)-3x\left(x-1\right)+7\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow16x^2\left(x-1\right)-3x\left(x-1\right)+\left(x-1\right)\left(7x+7\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(16x^2-3x+7x+7\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(16x^2+4x+7\right)=0\)
<=> x - 1 = 0
<=> x = 1
\(\Leftrightarrow16x^3-16x^2+4x^2-4x+7x-7=0\)
\(\Leftrightarrow16x^2.\left(x-1\right)+4x.\left(x-1\right)+7.\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right).\left(16x^2+4x+7\right)=0\)
Ta có \(16x^2+4x+7=\left(4x\right)^2+2.4x.\frac{1}{2}+\frac{1}{4}+\frac{27}{4}\)
\(=\left(4x+\frac{1}{2}\right)^2+\frac{27}{4}>0\)
nên \(\left(x-1\right).\left(16x^2+4x+7\right)=0\)
\(\Leftrightarrow x-1=0\)
\(\Rightarrow x=1\)
\(16x^3-12x^2+3x-7=0\)
\(16x^3-16x^2+4x^2-4x+7x-7=0\)
\(16x^2\left(x-1\right)+4x\left(x-1\right)+7\left(x-1\right)=0\)
\(\left(x-1\right)\left(16x^2+4x+7\right)=0\)
Vì \(0< 16x^2+4x+7\)
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
= 16x3 -16x2 + 4x2 - 4x + 7x - 7
= 16x2(x-1)+4x(x-1)+7(x-1)
=(x-1)(16x2+4x+7)
16x^3 - 12x^2 + 3x - 7 = 0
=>16x3+4x2-16x2+7x-4x-7=0
=>16x3+4x2+7x-16x2-4x-7=0
=>x(16x2+4x+7)-(16x2+4x+7)=0
=>(x-1)(16x2+4x+7)=0
=>x-1=0 hoặc 16x2+4x+7=0
\(\Rightarrow16\left(x+\frac{1}{8}\right)^2+\frac{27}{4}>0\) với mọi x =>vô nghiệm
Vậy phương trình trên có nghiện thỏa mãn là x=1