K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 3 2022

\(x^3=x^3-1+1=\left(x-1\right)\left(x^2+x+1\right)+1\)

\(\Rightarrow x^3\equiv1\left(\text{mod }x^2+x+1\right)\)

\(\Rightarrow P\left(x^3\right)\equiv P\left(1\right)\left(\text{mod }x^2+x+1\right)\) 

Và \(xQ\left(x^3\right)\equiv xQ\left(1\right)\left(\text{mod }x^2+x+1\right)\)

\(\Rightarrow P\left(x^3\right)+xQ\left(x^3\right)\equiv P\left(1\right)+xQ\left(1\right)\left(\text{mod }x^2+x+1\right)\)  với mọi x nguyên

\(\Rightarrow P\left(1\right)+x.Q\left(1\right)\) chia hết \(x^2+x+1\) với mọi x nguyên

Điều này xảy ra khi và chỉ khi \(P\left(1\right)=Q\left(1\right)=0\)

\(\Rightarrow P\left(x\right)\) có nghiệm \(x=1\) hay \(P\left(x\right)\) chia hết cho \(x-1\)

24 tháng 3 2022

 Cám ơn thầy Lâm ạ, ôi nhưng đây quả là bài toán khá hóc búa thầy ạ

 

20 tháng 4 2023

Chữ xấu vậy.

NM
19 tháng 1 2021

Ta đi phản chứng, giả sử P(x) có thể phân tích được thành tích hai đa thức hệ số nguyên bậc lớn hơn 1.

đặt \(P\left(x\right)=Q\left(x\right).H\left(x\right)\)với bậc của Q(x) và H(x) lớn hơn 1

Ta Thấy \(Q\left(i\right).H\left(i\right)=P\left(i\right)=-1\)với i=1,2,...2020.

suy ra \(\hept{\begin{cases}Q\left(i\right)=1\\H\left(i\right)=-1\end{cases}}\)hoặc \(\hept{\begin{cases}Q\left(i\right)=-1\\H\left(i\right)=1\end{cases}}\) suy ra \(Q\left(i\right)+H\left(i\right)=0\)với i=1,2,...,2020

mà bậc của Q(x) và H(x) không vượt quá 2019 suy ra \(Q\left(x\right)+H\left(x\right)=0\Rightarrow Q\left(x\right)=-H\left(x\right)\Rightarrow P\left(x\right)=-\left(Q\left(x\right)\right)^2\)

xét hệ số đơn thức bậc cao nhất của \(P\left(x\right)\) bằng 1 

hệ số đơn thức bậc cao nhất của \(-\left(Q\left(x\right)\right)^2\) bằng -1.  Suy ra vô lý. 

Vậy P(x)  không thể phân tích thành hai đa thức hệ số nguyên có bậc lớn hơn 1.

6 tháng 3 2018

Bài 1 : k bt làm

Bài 2 :

Ta có : \(\left(x-6\right).P\left(x\right)=\left(x+1\right).P\left(x-4\right)\) với mọi x

+) Với \(x=6\Leftrightarrow\left(6-6\right).P\left(6\right)=\left(6+1\right).P\left(6-4\right)\)

\(\Leftrightarrow0.P\left(6\right)=7.P\left(2\right)\)

\(\Leftrightarrow0=7.P\left(2\right)\)

\(\Leftrightarrow P\left(2\right)=0\)

\(\Leftrightarrow x=2\) là 1 nghiệm của \(P\left(x\right)\left(1\right)\)

+) Với \(x=-1\Leftrightarrow\left(-1-6\right).P\left(-1\right)=\left(-1+1\right).P\left(-1-4\right)\)

\(\Leftrightarrow\left(-7\right).P\left(-1\right)=0.P\left(-5\right)\)

\(\Leftrightarrow\left(-7\right).P\left(-1\right)=0\)

\(\Leftrightarrow P\left(-1\right)=0\)

\(\Leftrightarrow x=-1\) là 1 nghiệm của \(P\left(x\right)\) \(\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow P\left(x\right)\) có ót nhất 2 nghiệm

6 tháng 3 2018

nghiệm của đa thức xác định đa thức đó bằng 0

0 mà k bằng 0. You định làm nên cái nghịch lý ak -.-

1 tháng 3 2020

\(P\left(x\right)=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+a\). đặt \(y=x^2+8x+9\)

Ta đc \(P\left(x\right)=\left(y-2\right)\left(y+6\right)+a=y^2+4y-12+a\)

Và Q(x)=y

Thực hiện phép chia P(x) cho Q(x) đc.... rút ra a=?( nếu a phải chia hết cho y)


1 tháng 3 2020

Giải cả ra cho dễ hiểu!

AH
Akai Haruma
Giáo viên
3 tháng 3 2021

Lời giải:

Sử dụng bổ đề. Với $f(x)$ có hệ số nguyên thì $f(a)-f(b)\vdots a-b$ với $a,b$ là nguyên khác nhau.

Áp dụng vào bài toán, ta dễ dàng chỉ ra $g(x^3)-g(-1)\vdots x^3+1\vdots x^2-x+1(1)$

Giả sử $f(x)=x^2+xg(x^3)\vdots x^2-x+1$

$\Leftrightarrow g(x^3)+x\vdots x^2-x+1(2)$

$(1);(2)\Rightarrow x+g(-1)\vdots x^2-x+1$ (vô lý)

Do đó ta có đpcm.

3 tháng 3 2021

Akai Haruma Giáo viên, mk ko hiểu cái chỗ g(x^3)+x chia hết cho x^2-x+1 với cái dòng tiếp theo ngay sau đó ấy. Bn giải thích rõ đc ko??