K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NM
19 tháng 1 2021

Ta đi phản chứng, giả sử P(x) có thể phân tích được thành tích hai đa thức hệ số nguyên bậc lớn hơn 1.

đặt \(P\left(x\right)=Q\left(x\right).H\left(x\right)\)với bậc của Q(x) và H(x) lớn hơn 1

Ta Thấy \(Q\left(i\right).H\left(i\right)=P\left(i\right)=-1\)với i=1,2,...2020.

suy ra \(\hept{\begin{cases}Q\left(i\right)=1\\H\left(i\right)=-1\end{cases}}\)hoặc \(\hept{\begin{cases}Q\left(i\right)=-1\\H\left(i\right)=1\end{cases}}\) suy ra \(Q\left(i\right)+H\left(i\right)=0\)với i=1,2,...,2020

mà bậc của Q(x) và H(x) không vượt quá 2019 suy ra \(Q\left(x\right)+H\left(x\right)=0\Rightarrow Q\left(x\right)=-H\left(x\right)\Rightarrow P\left(x\right)=-\left(Q\left(x\right)\right)^2\)

xét hệ số đơn thức bậc cao nhất của \(P\left(x\right)\) bằng 1 

hệ số đơn thức bậc cao nhất của \(-\left(Q\left(x\right)\right)^2\) bằng -1.  Suy ra vô lý. 

Vậy P(x)  không thể phân tích thành hai đa thức hệ số nguyên có bậc lớn hơn 1.

NV
20 tháng 3 2022

\(x^3=x^3-1+1=\left(x-1\right)\left(x^2+x+1\right)+1\)

\(\Rightarrow x^3\equiv1\left(\text{mod }x^2+x+1\right)\)

\(\Rightarrow P\left(x^3\right)\equiv P\left(1\right)\left(\text{mod }x^2+x+1\right)\) 

Và \(xQ\left(x^3\right)\equiv xQ\left(1\right)\left(\text{mod }x^2+x+1\right)\)

\(\Rightarrow P\left(x^3\right)+xQ\left(x^3\right)\equiv P\left(1\right)+xQ\left(1\right)\left(\text{mod }x^2+x+1\right)\)  với mọi x nguyên

\(\Rightarrow P\left(1\right)+x.Q\left(1\right)\) chia hết \(x^2+x+1\) với mọi x nguyên

Điều này xảy ra khi và chỉ khi \(P\left(1\right)=Q\left(1\right)=0\)

\(\Rightarrow P\left(x\right)\) có nghiệm \(x=1\) hay \(P\left(x\right)\) chia hết cho \(x-1\)

24 tháng 3 2022

 Cám ơn thầy Lâm ạ, ôi nhưng đây quả là bài toán khá hóc búa thầy ạ

 

NV
25 tháng 3 2021

Do \(P\left(a\right)=P\left(b\right)=P\left(c\right)=P\left(d\right)=7\) nên \(P\left(x\right)-7=0\) có 4 nghiệm nguyên phân biệt

\(\Rightarrow P\left(x\right)-7=\left(x-a\right)\left(x-b\right)\left(x-c\right)\left(x-d\right)Q\left(x\right)\) với Q(x) là đa thức có giá trị nguyên khi x nguyên

Xét phương trình: \(P\left(x\right)-14=0\)

\(\Leftrightarrow P\left(x\right)-7=7\)

\(\Leftrightarrow\left(x-a\right)\left(x-b\right)\left(x-c\right)\left(x-d\right)Q\left(x\right)=7\) (1)

Do a;b;c;d phân biệt \(\Rightarrow\) vế trái là tích của ít nhất 4 số nguyên phân biệt khi x nguyên

Mà 7 là số nguyên tố nên chỉ có thể phân tích thành tích của 2 số nguyên phân biệt

\(\Rightarrow\) Không tồn tại x nguyên thỏa mãn (1) hay \(P\left(x\right)-14=0\) ko có nghiệm nguyên

22 tháng 12 2022

Bài 1:

\(\left\{{}\begin{matrix}xy+2=2x+y\left(1\right)\\2xy+y^2+3y=6\left(2\right)\end{matrix}\right.\)

\(\left(1\right)\Rightarrow xy-y+2-2x=0\)

\(\Rightarrow y\left(x-1\right)-2\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(y-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

Với \(x=1\). Thay vào (2) ta được:

\(2y+y^2+3y=6\)

\(\Leftrightarrow y^2+5y-6=0\)

\(\Leftrightarrow y^2+y-6y-6=0\)

\(\Leftrightarrow y\left(y+1\right)-6\left(y+1\right)=0\)

\(\Leftrightarrow\left(y+1\right)\left(y-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=-1\\y=6\end{matrix}\right.\)

Với \(y=2\). Thay vào (2) ta được:

\(2x.2+2^2+3.2=6\)

\(\Leftrightarrow4x+4+6=6\)

\(\Leftrightarrow x=-1\)

Vậy hệ phương trình đã cho có nghiệm (x,y) \(\in\left\{\left(1;-1\right),\left(1;6\right),\left(-1;2\right)\right\}\)

22 tháng 12 2022

Bài 2:

\(f\left(x\right)=x^4+6x^3+11x^2+6x\)

\(=x\left(x^3+6x^2+11x+6\right)\)

\(=x\left(x^3+x^2+5x^2+5x+6x+6\right)\)

\(=x\left[x^2\left(x+1\right)+5x\left(x+1\right)+6\left(x+1\right)\right]\)

\(=x\left(x+1\right)\left(x^2+5x+6\right)\)

\(=x\left(x+1\right)\left(x^2+3x+2x+6\right)\)

\(=x\left(x+1\right)\left[x\left(x+3\right)+2\left(x+3\right)\right]\)

\(=x\left(x+1\right)\left(x+2\right)\left(x+3\right)\)

b) Ta có: \(f\left(x\right)+1=x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)

\(=x\left(x+3\right).\left(x+1\right)\left(x+2\right)+1\)

\(=\left(x^2+3x\right).\left(x^2+3x+2\right)+1\)

\(=\left(x^2+3x\right)^2+2\left(x^2+3x\right)+1\)

\(=\left(x^2+3x+1\right)^2\)

Vì x là số nguyên nên \(f\left(x\right)+1\) là số chính phương.

NV
24 tháng 3 2022

Đặt \(Q\left(x\right)=P\left(x\right)-3x-2\)

\(\Rightarrow Q\left(1\right)=Q\left(2\right)=Q\left(4\right)=0\)

\(\Rightarrow Q\left(x\right)\) có 3 nghiệm \(x=\left\{1;2;4\right\}\)

Do \(P\left(x\right)\) bậc 4 và có hệ số cao nhất bằng 1 \(\Rightarrow Q\left(x\right)\) cũng là đa thức bậc 4 có hệ số cao nhất bằng 1

\(\Rightarrow Q\left(x\right)=\left(x-1\right)\left(x-2\right)\left(x-4\right)\left(x-x_0\right)\) với \(x_0\in R\)

\(\Rightarrow P\left(x\right)=Q\left(x\right)+3x+2=\left(x-1\right)\left(x-2\right)\left(x-4\right)\left(x-x_0\right)+3x+2\)

\(\Rightarrow P\left(5\right)=12\left(5-x_0\right)+17\) ; \(P\left(-1\right)=-30\left(-1-x_0\right)-1\)

\(\Rightarrow S=60\left(5-x_0\right)+85-60\left(-1-x_0\right)-2=443\)

24 tháng 3 2022

Cám ơn thầy ạ, em xin phép gửi đến thầy đề thi  chọn học sinh giỏi toán lớp 9 của thành phố Hà Nội vừa thi xong thầy ạundefined

22 tháng 8 2016

Toán Tuổi Thơ 2 chứ j,thế mà vẫn dc vào câu hỏi hay

21 tháng 8 2016
http://olm.vn/hoi-dap/question/678816.html
NV
25 tháng 3 2022

Xét \(f\left[f\left(x\right)+x\right]=\left[f\left(x\right)+x\right]^2+m\left[f\left(x\right)+x\right]+n\)

\(=\left(x^2+mx+n+x\right)^2+m\left(x^2+mx+n+x\right)+n\)

\(=\left(x^2+mx+n\right)^2+2x\left(x^2+mx+n\right)+x^2+m\left(x^2+mx+n\right)+mx+n\)

\(=\left(x^2+mx+n\right)^2+2x\left(x^2+mx+n\right)+m\left(x^2+mx+n\right)+\left(x^2+mx+n\right)\)

\(=\left(x^2+mx+n\right)\left(x^2+mx+n+2x+m+1\right)\)

\(=\left(x^2+mx+n\right)\left[\left(x+1\right)^2+m\left(x+1\right)+n\right]\)

\(=f\left(x\right).f\left(x+1\right)\)

Thay \(x=2021\)

\(\Rightarrow f\left[f\left(2021\right)+2021\right]=f\left(2021\right).f\left(2022\right)\)

Đặt \(f\left(2021\right)+2021=k\)

Do \(f\left(x\right)\) có hệ số m;n nguyên \(\Rightarrow k\) nguyên

\(\Rightarrow f\left(k\right)=f\left(2021\right).f\left(2022\right)\) với k nguyên 

Hay tồn tại số nguyên k thỏa mãn yêu cầu