Cho \(A=\dfrac{5n+1}{n+1}\left(n\ne-1\right)\). Tìm n ϵ N để A nguyên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để A= \(\frac{5n+1}{n+1}\)
thì \(5n+1\)chia hết cho n +1 nên n+1 thuộc U(5)=1, 5.-1,-5
Ta có
Nếu n+1 =1 thì suy ra n =0
....n+1 = -1 thì suy ra n= -2
... n+1=5 thì suy ra n =4
....n+1= -5 thì suy ra n = -6
vây n thuộc 0, -2, 4, -6
\(\dfrac{a}{n\left(n+a\right)}=\dfrac{1}{n}-\dfrac{1}{n+a}\)
\(\dfrac{a}{n+\left(n+a\right)}+\dfrac{1}{n+a}=\dfrac{1}{n}\)
Vậy ta sẽ CRM\(\dfrac{a}{n+\left(n+a\right)}+\dfrac{1}{n+a}=\dfrac{1}{n}\)
\(\dfrac{a}{n\left(n+a\right)}+\dfrac{1}{n+a}\)
\(=\dfrac{a}{n}\cdot\dfrac{1}{\left(n+a\right)}+\dfrac{1}{n+a}\)
\(=\dfrac{1}{n+a}\cdot\left(\dfrac{a}{n}+1\right)\)
\(=\dfrac{1}{n+a}\cdot\dfrac{a+n}{n}\)
Đã \(CMR:\dfrac{a}{n\left(n+a\right)}=\dfrac{1}{n}-\dfrac{1}{n+a}\)
Ta có : \(A=\dfrac{n+2}{n-5}\)
\(\Rightarrow A=\dfrac{n-5+7}{n-5}=\dfrac{n-5}{n-5}+\dfrac{7}{n-5}\)
\(\Rightarrow A=1+\dfrac{7}{n-5}\)
Để \(A\in Z\Leftrightarrow\dfrac{7}{n-5}\in Z\)
\(\Leftrightarrow\left(n-5\right)\inƯ\left(7\right)\)
mà \(Ư\left(7\right)=\left(\pm1;\pm7\right)\)
\(\Rightarrow n\in\left(6;4;12;-2\right)\)
\(Vậy...\)
Để \(A=\frac{5n+1}{n+1}\in Z\) \(\Leftrightarrow5n+1⋮n+1\)
\(\Leftrightarrow\) \(5n+1-5\left(n+1\right)⋮n+1\) (Vì 5(n+1)⋮n+1)
\(\Leftrightarrow5n+1-5n-5⋮n+1\)
\(\Leftrightarrow-4⋮n+1\)
\(\Rightarrow n+1\in\) Ư\(\left(-4\right)=\left\{1;2;4;-1;-2;-4\right\}\)
\(\Rightarrow n\in\left\{0;1;3;-2;-3;-5\right\}\)
Mà \(n\in N\) nên \(n\in\left\{0;1;3\right\}\)
Vậy để \(A\) nguyên thì \(n\in\left\{0;1;3\right\}\) (\(n\in N\))
a) Để A=\(\frac{n-5}{n+1}\)có giá trị nguyên thì n-5 chia hết cho n+1
=>n+1-6 chia hết cho n+1
=>6 chia hết cho n+1
=>n+1 thuộc Ư(6)={1;2;3;6;-1;-2;-3;-6}
=>n thuộc {0;1;2;5;-2;-3;-4;-7}
Vậy.....
Áp dụng : \(\dfrac{1}{\sqrt{n}}>2\left(\sqrt{n+1}-\sqrt{n}\right)\)
\(\dfrac{1}{\sqrt{n}}+\dfrac{1}{\sqrt{n-1}}+...+\dfrac{1}{\sqrt{3}}+\dfrac{1}{\sqrt{2}}+1>2\left(\sqrt{n+1}-\sqrt{n}\right)+2\left(\sqrt{n}-\sqrt{n-1}\right)+...+2\left(\sqrt{4}-\sqrt{3}\right)+2\left(\sqrt{3}-\sqrt{2}\right)+2\left(\sqrt{2}-1\right).\)
\(=2\left(\sqrt{n+1}-1\right).\)
để a có giá trị nguyên khi n-2 chia hết n+2
Ta có: n-2 chia hết cho n+2 => n+2-4chia hết cho n+2
Vì n+2 chia hết cho n+2 => 4 chia hết cho n+2 => n+4 thuộc Ư4
Ư4 = {+-1,+-2,+-4}
n+4 | -1 | 1 | 2 | -2 | 4 | -4 |
n | -5 | -3 | -2(loại) | -6 | 0 | -8 |
=> n thuộc { -5,-3,-6,0,-8} thì a có giá trị nguyên
B=\(\frac{2n+1}{n+1}\)
để B có giá trị nguyên khi 2n+1 chia hết cho n+1
Ta có: 2n+1 chia hết cho n+1 => 2n+2-1chia hết cho n+1
Vì 2n+2chia hết cho n+1 => 1 chia hết cho n+1
TH1: n+1=1 => n=0
TH2: n+1=-1 => n=-2
a, Để \(\frac{n-2}{n+2}\in Z\Rightarrow n-2⋮n+2\)
\(\Rightarrow n+2-4⋮n+2\)
\(\Rightarrow4⋮n+2\)
\(n+2\inƯ\left(4\right)\)
\(\Rightarrow n+2\in\left\{\pm1,\pm2,\pm4\right\}\)
\(\Rightarrow n\in\left\{-3,-1,-4,0,2,-6\right\}\)
$A=\frac{5n+1}{n+1}=\frac{5(n+1)-4}{n+1}=5-\frac{4}{n+1}\in \mathbb{Z}$
$\Leftrightarrow n+1\in Ư(4)=\left\{-4;-2;-1;1;2;4\right\}$
Mà $n\in\mathbb{N}$
$\Rightarrow n\in\left\{0;1;3\right\}$
\(A=\dfrac{5n+1}{n+1}=\dfrac{5\left(n+1\right)-4}{n+1}=\dfrac{5\left(n+1\right)}{n+1}-\dfrac{4}{n+1}=5-\dfrac{4}{n+1}\).ĐK:n≠-1
để \(Anguy\text{ê}n.th\text{ì}4⋮(n+1)\\ \Rightarrow n+1\in\text{Ư}\left(4\right)=\left\{1;2;4\right\}\)
ta có bảng sau :
vậy....