1. Cho a>b
Chứng tỏ a/b > a+k/b+k.
2. Cho a>b
Chứng tỏ a/b <a+k/b+k.
Hai bài giải theo cách lớp 5, lớp 6.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VT=\left(\sqrt{\dfrac{a}{b}}-\sqrt{\dfrac{b}{a}}\right):\left(a-b\right)\\ =\left(\dfrac{\sqrt{a}}{\sqrt{b}}-\dfrac{\sqrt{b}}{\sqrt{a}}\right).\dfrac{1}{a-b}\\ =\dfrac{\sqrt{a}.\sqrt{a}-\sqrt{b}.\sqrt{b}}{\sqrt{ab}}.\dfrac{1}{a-b}\\ =\dfrac{\sqrt{a^2}-\sqrt{b^2}}{\sqrt{ab}}.\dfrac{1}{a-b}\\ =\dfrac{a-b}{\sqrt{ab}}.\dfrac{1}{a-b}\\ =\dfrac{1}{\sqrt{ab}}=VP\left(dpcm\right)\)
\(VT=\dfrac{a-b}{\sqrt{ab}}\cdot\dfrac{1}{a-b}=\dfrac{1}{\sqrt{ab}}=VP\)
2.
\(\dfrac{\left(a+b\right)^2}{2}\ge2ab\)
\(\Leftrightarrow\left(a+b\right)^2\ge4ab\)
\(\Leftrightarrow\left(a-b\right)^2\ge0\) ( đúng )
Tương tự.......................
1. Xét hiệu : \(\dfrac{1}{a}-\dfrac{1}{b}=\dfrac{b-a}{ab}\)
Lại có: b - a < 0 ( a > b)
ab >0 ( a>0, b > 0)
\(\Rightarrow\dfrac{b-a}{ab}< 0\)
Vậy: \(\dfrac{1}{a}< \dfrac{1}{b}\)
2. Xét hiệu : \(\dfrac{\left(a+b\right)^2}{2}-2ab=\dfrac{a^2+2ab+b^2-4ab}{2}=\dfrac{\left(a-b\right)^2}{2}\ge0\)
Vậy : \(\dfrac{\left(a+b\right)^2}{2}\ge2ab\) Xảy ra đẳng thức khi a = b
3. Xét hiệu : \(\dfrac{a^2+b^2}{2}-ab=\dfrac{a^2+b^2-2ab}{2}=\dfrac{\left(a-b\right)^2}{2}\ge0\)
Vậy : \(\dfrac{a^2+b^2}{2}\ge ab\) Xảy ra đẳng thức khi a = b
- Gọi E là giao điểm của AC và BD
△ABE có trung tuyến BE
\(\Rightarrow BE^2=\dfrac{2\left(AB^2+BC^2\right)-AC^2}{4}\)
\(\Rightarrow4.BE^2=2\left(AB^2+BC^2\right)-AC^2\)
Mà O là trung điểm BD \(\Rightarrow BD=2.BE\Rightarrow BD^2=4.BE^2\)
\(\Rightarrow BD^2=2\left(AB^2+BC^2\right)-AC^2\)
\(\Rightarrow BD^2+AC^2=2\left(AB^2+BC^2\right)\)
Vậy: \(AC^2+BD^2=2\left(a^2+b^2\right)\left(đpcm\right)\)
(Hình như đây là Toán 10?)
Lời giải:
Kẻ đường cao $BH, DT$ của hình bình hành
Dễ chứng minh $\triangle ADT =\triangle BCH$ (ch-gn)
$\Rightarrow DT=CH; AT=BH$
Áp dụng định lý Pitago:
$AC^2+BD^2=AT^2+TC^2+BH^2+DH^2$
$=(AT^2+BH^2)+TC^2+DH^2)$
$=2AT^2+(DC-DT)^2+(DC+CH)^2$
$=2(AD^2-DT^2)+(DC-DT)^2+(DC-DT)^2$
$=2(b^2-DT^2)+(a-DT)^2+(a+DT)^2$
$=2(b^2+a^2)$
Ta có đpcm.
Sửa đề chút nhé: H là giao của AK và MN
a) Xét tứ giác BCHK ta có:
\(\widehat{BCH}=90^o\)( MN vuông AB)
\(\widehat{BKH}=90^o\)( góc BKA chắn 1/2 đường tròn)
=> \(\widehat{BCH}+\widehat{BKH}=180^o\)
=> BCHK nội tiếp
b) Ta có: OA vuông MN, và OA cắt MN tại C
=> C là trung điểm MN
=> BC là đường trung tuyến tam giác BMN
Mặt khác OC=1/2 OA, OA=1/2 AB
=> OC=1/3 BC
=> O là trọng tâm tam giác BMN
Mặt khác O là tâm đường tròn ngoại tiếp tam giác BMN
=> Tam giác BMN là tam giác đều
Giả sử x ∈ B, x = 6m + 4, m ∈ Z. Khi đó ta có thể viết x = 3(2m + 1) + 1
Đặt k = 2m + 1 thì k ∈ Z vào ta có x = 3k + 1, suy ra x ∈ A
Như vậy x ∈ B ⇒ x ∈ A
hay B ⊂ A
Anh em hả, mk ko phải anh
Do a > b
=> a.k > b.k
=> a.k + a.b > b.k + a.b
=> a.(b + k) > b.(a + k)
=> a/b > a+k/b+k