K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: XétΔBEC vuông tại E và ΔCFB vuông tại F có

BC chung

\(\widehat{EBC}=\widehat{FCB}\)

Do đó: ΔBEC=ΔCFB

b: Xét ΔAEF có AE=AF

nên ΔAEF cân tại A

c: Xét ΔABC có AF/AB=AE/AC
nên FE//BC

d: Xét ΔHBC có \(\widehat{HBC}=\widehat{HCB}\)

nên ΔHBC cân tại H

=>HB=HC

hay H nằm trên đường trung trực của BC(1)

Ta có: ΔABC cân tại A

mà AM là trung tuyến

nên AM là trung trực của BC(2)

Từ (1) và (2) suy ra A,H,M thẳng hàng

30 tháng 4 2022

a) 

Do \(\triangle ABC \) cân ( \(AB=AC\) )

\(\Rightarrow \widehat{ABC} = \widehat{ACB}\)

Mà \(BE ; CF\) lần lượt là đường phân giác của \(\widehat{ABC} ; \widehat{ACB}.\)

\(\Rightarrow \widehat{ABE} = \widehat{ACF} \)

Xét \(\triangle ABE\) và \(\triangle ACF\) ta  có :

\(AB = AC\) ( gt )

\(\widehat{ABC}\) chung 

\(\widehat{ABE} = \widehat{ACF} \) ( cmt )

\(\Rightarrow \) \(\triangle ABE\) \(=\) \(\triangle ACF\) ( g.c.g )

 

30 tháng 4 2022

làm hộ mình câu c và d

 

Bổ sung đề: D và E lần lượt là trung điểm của AB và AC

a) Ta có: \(AD=DB=\dfrac{AB}{2}\)(D là trung điểm của AB)

\(AE=EC=\dfrac{AC}{2}\)(E là trung điểm của AC)

mà AB=AC(ΔABC cân tại A)

nên AD=DB=AE=EC

Xét ΔABE và ΔACD có 

AB=AC(ΔABC cân tại A)

\(\widehat{BAE}\) chung

AE=AD(cmt)

Do đó: ΔABE=ΔACD(c-g-c)

b) Ta có: ΔABE=ΔACD(cmt)

nên BE=CD(hai cạnh tương ứng)

c) Xét ΔDBC và ΔECB có

DB=EC(cmt)

\(\widehat{DBC}=\widehat{ECB}\)(hai góc ở đáy của ΔABC cân tại A)

BC chung

Do đó: ΔDBC=ΔECB(c-g-c)

Suy ra: \(\widehat{DCB}=\widehat{EBC}\)(hai góc tương ứng)

hay \(\widehat{KBC}=\widehat{KCB}\)

Xét ΔKBC có \(\widehat{KBC}=\widehat{KCB}\)(cmt)

nên ΔKBC cân tại K(Định lí đảo của tam giác cân)

d) Xét ΔABK và ΔACK có 

AB=AC(ΔABC cân tại A)AK chung

BK=CK(ΔKBC cân tại K)Do đó: ΔABK=ΔACK(c-c-c)

Suy ra: \(\widehat{BAK}=\widehat{CAK}\)(hai góc tương ứng)

mà tia AK nằm giữa hai tia AB,AC

nên AK là tia phân giác của \(\widehat{BAC}\)(đpcm)

a: Xét ΔABE vuông tại E và ΔACF vuông tại F có

AB=AC

\(\widehat{BAE}\) chung

Do đó: ΔABE=ΔACF

b: Ta có: ΔABE=ΔACF

nên BE=CF

Xét ΔFBC vuông tại F và ΔECB vuông tại E có

BC chung

CF=BE

Do đó: ΔFBC=ΔECB

Suy ra: \(\widehat{ICB}=\widehat{IBC}\)

hay ΔIBC cân tại I

c: Ta có: AB=AC
nên A nằm trên đườg trung trực của BC(1)

ta có: IB=IC

nên I nằm trên đường trung trực của BC(2)

Ta có: MB=MC

nên M nằm trên đường trung trực của BC(3)

Từ (1), (2) và (3) suy ra A,I,M thẳng hàng

a) Ta có: \(AD=\dfrac{AB}{2}\)(D là trung điểm của AB)

\(AE=\dfrac{AC}{2}\)(E là trung điểm của AC)

mà AB=AC(ΔABC cân tại A)

nên AD=AE

Xét ΔABE và ΔACD có

AB=AC(ΔABC cân tại A)

\(\widehat{BAE}\) chung

AE=AD(cmt)

Do đó: ΔABE=ΔACD(c-g-c)

4 tháng 3 2021

Bài này dễ đợi mình !