K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Điểm D ở đâu vậy bạn?

16 tháng 3 2022

mk có sửa lại đề r, bạn xem lại hộ mk nha

 

a: Xét (O) có 

CM là tiếp tuyến có M là tiếp điểm

CA là tiếp tuyến có A là tiếp điểm

Do đó: CM=CA
Xét (O) có

DM là tiếp tuyến có M là tiếp điểm

DB là tiếp tuyến có B là tiếp điểm

Do đó: DM=DB

Ta có: CM+MD=CD

mà CM=CA

và DM=DB

nên CD=CA+DB

21 tháng 11 2022

a: Xét (O) có

CM,CA là các tiếp tuyến

nên CM=CA và OC là phân giác của góc MOA(1)

mà OM=OA

nên OC là đường trung trực của MA

=>OC vuông góc với MA tại I

Xét (O) có

DM,DB là các tiếp tuyến

nên DM=DB và OD là phân giác của góc MOB(2)

mà OM=OB

nên OD là trung trực của BM

=>OD vuông góc với BM

Từ (1) và (2) suy ra góc COD=1/2*180=90 độ

=>O nằm trên đường tròn đường kính CD

b: Xét tứ giác MIOK có

góc MIO=góc IOK=góc MKO=90 độ

nên MIOK là hình chữ nhật

=>MO=IK

c: Xét hình thang ABDC có

O,O' lần lượt là trung điểm của AB,CD

nên OO' là đường trung bình

=>OO''//AC

=>OO' vuông góc với AB

=>AB là tiếp tuyến của (O')

a: Xét (O) có

MA.MC là tiếp tuyến

=>MA=MC

mà OA=OC

nên OM là trung trực của AC

=>OM vuông góc AC tại E

góc ADB=1/2*180=90 độ

=>góc ADM=90 độ=góc AEM

=>AMDE nội tiếp

b: AMDE nội tiếp

=>góc ADE=góc AMO=góc ACO

4 tháng 4 2023

loading...

1: Xét (O) có

CA là tiếp tuyến có A là tiếp điểm

CM là tiếp tuyến có M là tiếp điểm

Do đó: OC là tia phân giác của \(\widehat{MOA}\)

Xét (O) có 

DB là tiếp tuyến có B là tiếp điểm

DM là tiếp tuyến có M là tiếp điểm

Do đó: OD là tia phân giác của \(\widehat{MOB}\)

Ta có: \(\widehat{COD}=\widehat{COM}+\widehat{DOM}\)

\(=\left(\widehat{MOA}+\widehat{MOB}\right)\cdot\dfrac{1}{2}\)

\(=180^0\cdot\dfrac{1}{2}=90^0\)

hay ΔCOD vuông tại O 

Xét (O) có

CA là tiếp tuyến có A là tiếp điểm

CM là tiếp tuyến có M là tiếp điểm

Do đó: CM=CA

Xét (O) có

DB là tiếp tuyến có B là tiếp điểm

DM là tiếp tuyến có M là tiếp điểm

Do đó: DB=DM

\(AC\cdot BD=CM\cdot MD=OM^2\) không phụ thuộc vào vị trí của M

a) Vì MA, MC là tiếp tuyến nên: ˆMAO=ˆMCO=900⇒MAO^=MCO^=900⇒ AMCO là tứ giác nội tiếp đường tròn đường kính MO.

ˆADB=900ADB^=900 góc nội tiếp chắn nửa đường  tròn) ⇒ˆADM=900⇒ADM^=900 (1)

Lại có: OA = OC = R; MA = MC (tính chất tiếp tuyến). Suy ra OM là đường trung trực của AC

⇒ˆAEM=900⇒AEM^=900 (2). 

Từ (1) và (2) suy ra MADE là tứ giác nội tiếp đường tròn đường kính MA.

b)  Tứ giác AMDE nội tiếp suy ra: ˆADE=ˆAME=ˆAMOADE^=AME^=AMO^ (góc nội tiếp cùng chắn cung AE) (3)

Tứ giác AMCO nội tiếp suy ra: ˆAMO=ˆACOAMO^=ACO^(góc nội tiếp cùng chắn cung AO) (4).

Từ (3) và (4) suy ra ˆADE=ˆACOADE^=ACO^

c) Tia BC cắt Ax tại N. Ta có ˆACB=900ACB^=900 (góc nội tiếp chắn nửa đường tròn) ⇒ˆACN=900⇒ACN^=900, suy ra ∆ACN vuông tại C. Lại có MC = MA nên suy ra được MC = MN, do đó MA = MN (5).

Mặt khác ta có CH // NA (cùng vuông góc với AB) nên theo định lí Ta-lét thì ICMN=IHMA(=BIBM)ICMN=IHMA(=BIBM) (6).

Từ (5) và (6) suy ra IC = IH hay MB đi qua trung điểm của CH.

5 tháng 3 2023

Để giải quyết bài toán này, ta sử dụng định lí Menelaus và định lí Stewart.

Bước 1: Chứng minh AD/AC + AM/AN = 3.

Áp dụng định lí Menelaus cho tam giác AGC với đường thẳng cắt AC, ID, MG, ta có:

 

$\dfrac{IM}{MD} \cdot \dfrac{DN}{NC} \cdot \dfrac{CG}{GA} = 1$

Do $CG = 2 \cdot GA$ và $DN = AN - AD = AN - 2\cdot AI$, ta có thể đưa về dạng:

 

$\dfrac{IM}{MD} \cdot \dfrac{AN-2\cdot AI}{NC} = \dfrac{1}{2}$

Từ định lí Stewart, ta có $4\cdot AI\cdot DI + AD^2 = 3\cdot ID^2$, do đó $ID = \dfrac{AD}{\sqrt{3}}$.

Thay vào phương trình trên, ta được:

 

$\dfrac{IM}{MD} \cdot \dfrac{AN-AD}{NC} = \dfrac{1}{\sqrt{3}}$

Tương đương với:

 

$\dfrac{IM}{MD} \cdot \dfrac{AD}{NC} + \dfrac{IM}{MD} \cdot \dfrac{AM}{AN} = \dfrac{1}{\sqrt{3}} + \dfrac{AD}{NC}$

Từ đó suy ra:

 

$\dfrac{AM}{AN} + \dfrac{AD}{AC} = \dfrac{3}{\sqrt{3}}$

Do đó:

 

$\dfrac{AD}{AC} + \dfrac{AM}{AN} = 3$ (Đpcm)