Tìm x > 1 biết:
\(5x\left(x-2000\right)-x+2000=0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 3x 3 - 3x = 0
=> 3x ( x 2 - 1 ) = 0
=> \(\orbr{\begin{cases}3x=0\\x^2-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x^2=1\end{cases}\Rightarrow[}\begin{cases}x=0\\x=1\\x=-1\end{cases}}\)
b, x ( x - 2 ) + ( x - 2 ) = 0
=> ( x - 2 ) ( x + 1 ) = 0
=> \(\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)
c, 5x ( x - 2000 ) - x + 2000 = 0
=> ( x - 2000 ) ( 5x - 1 ) = 0
=> \(\orbr{\begin{cases}x-2000=0\\5x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2000\\x=\frac{1}{5}\end{cases}}}\)
Bài giải:
a) 5x(x -2000) - x + 2000 = 0
5x(x -2000) - (x - 2000) = 0
(x - 2000)(5x - 1) = 0
Hoặc 5x - 1 = 0 => 5x = 1 => x =
Vậy x = ; x = 2000
b) x3 – 13x = 0
x(x2 - 13) = 0
Hoặc x = 0
Hoặc x2 - 13 = 0 => x2 = 13 => x = ±√13
Vậy x = 0; x = ±√13
a) 5x(x-2000)-x+2000=0
5x(x-2000)-(x-2000)=0
(x-2000)(5x-1)=0
\(\Leftrightarrow\) x-2000=0 hoặc 5x-1=0
\(\Leftrightarrow\) x=2000 hoặc x=\(\dfrac{1}{5}\)
b) \(x^3-13x=0\)
\(x\left(x^2-13\right)=0\)
\(\Leftrightarrow x=0\) hoặc \(x^2-13=0\)
\(\Leftrightarrow x=0\) hoặc \(x=13\) hoặc \(x=-13\)
a ) \(5x\left(x-2000\right)-x+2000=0\)
\(\Leftrightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\)
\(\Leftrightarrow\left(x-2000\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}5x-1=0\\x-2000=0\end{array}\right.\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1}{5}\\x=2000\end{array}\right.\)
b ) \(x^3-13x=0\)
\(\Leftrightarrow x\left(x^2-13\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=0\\x^2-13=0\Rightarrow\left[\begin{array}{nghiempt}x=\sqrt{13}\\x=-\sqrt{13}\end{array}\right.\end{array}\right.\)
a) \(3x^3-3x=0\)
\(\Rightarrow3x\left(x^2-1\right)=0\)
\(\Rightarrow3x\left(x-1\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}3x=0\\x-1=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
Vậy \(x\in\left\{0;\pm1\right\}\)
b) \(x\left(x-2\right)+x-2=0\)
\(\Rightarrow x\left(x-2\right)+\left(x-2\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x+1=0\\x-2=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-1\\x=2\end{matrix}\right.\)
Vậy \(x\in\left\{-1;2\right\}\)
c) \(5x\left(x-2000\right)-x+2000=0\)
\(\Rightarrow5x\left(x-2000\right)-\left(x-2000\right)=0\)
\(\Rightarrow\left(5x-1\right)\left(x-2000\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}5x-1=0\\x-2000=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=2000\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{1}{5};2000\right\}\)
a) 5x(x - 2000) - (x - 2000) = 0
tương đương (x - 2000)(5x - 1) = 0
tương đương x = 2000 hoặc x = 1/5
b) x(x^2 -13) = 0
\(x\left(x-\sqrt{13}\right)\left(x+\sqrt{13}\right)=0\)
tương đương x = 0 hoặ x = \(\sqrt{13}\)hoặc x = \(-\sqrt{13}\)
5x(x-2000)-x+2000=0
<=>5x(x-2000)-(x-2000)=0
<=>(5x-1)(x-2000)=0
<=>5x-1=0 hoặc x-2000=0
<=>5x=1 hoặc x=2000
5x=1,Mà x>1 =>loại
=>x=2000
\(5x\left[x-2000\right]-\text{ }\left[x-2000\right]=0\)
\(\left[5x-1\right]\cdot\left[x-2000\right]=0\)
\(\orbr{\begin{cases}5x-1=0\\x-2000=0\end{cases}}\Rightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=2000\end{cases}}\)
mà \(x>1\)nên giá trị \(x=\frac{1}{5}\)thỏa mãn.
\(V\text{ậy}\)\(x=\frac{1}{5}\)
à tôi nhầm là x < 1 nên sửa lại là giá trị \(x=2000\) thỏa mã nha.
Sorry bạn.