K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 1 2017

chết liền đó

2 tháng 1 2017

Có:

\(\left(x-5\right)^{x+2000}-\left(x-5\right)^{x+2000}.\left(x-5\right)^{16}=0\)

\(\Rightarrow\left(x-5\right)^{x+2000}.\left(1-\left(x-5\right)^{16}\right)=0\)

\(\orbr{\begin{cases}\left(x-5\right)^{x+2000}=0\\1-\left(x-5\right)^{16}=0\end{cases}\Rightarrow\orbr{\begin{cases}x-5=0\\\left(x-5\right)^{16}=1\end{cases}\Rightarrow}\orbr{\begin{cases}x=5\\\orbr{\begin{cases}x-5=1\\x-5=-1\end{cases}\Rightarrow}\orbr{\begin{cases}x=6\\x=4\end{cases}}\end{cases}}}\)

Vậy x thuộc 4;5;6.

Học tốt^^

9 tháng 10 2016

a.  x=1      y= -3

b.  x=5      y=7/2

c.  x= -1    y= -1/2

d.  x=1/4   y= 1/4

16 tháng 10 2016

a) x = 1    

y = -3

b) x = 5

y = 7/2

c) x = -1

y = -1/2

d) x = 1/4 

y = 1/4

nha bn

14 tháng 9 2019

Katori Nomudo

Bạn đợi tí được không ? Mình đang nháp !

Đợi khoảng 45'p

14 tháng 9 2019

Ta có: \(\hept{\begin{cases}\left(3x-2y\right)^{2020}\ge0;\forall x,y,z\\\left(5y-3z\right)^{2000}\ge0;\forall x,y,z\\|2z-5x|\ge0;\forall x,y,z\end{cases}}\)

\(\Rightarrow\left(3x-2y\right)^{2020}+\left(5y-3z\right)^{2000}+|2z-5x|\ge0;\forall x,y,z\)

Do đó \(\left(3x-2y\right)^{2020}+\left(5y-3z\right)^{2000}+|2z-5x|=0\)

\(\Leftrightarrow\hept{\begin{cases}\left(3x-2y\right)^{2020}=0\\\left(5y-3z\right)^{2000}=0\\|2z-5x|=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}3x=2y\\5y=3z\\2z=5x\end{cases}}\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{3}=\frac{z}{5}\\\frac{z}{5}=\frac{x}{2}\end{cases}}\)

\(\Rightarrow\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)

Áp dụng tc của dãy tỉ số bằng nhau ta có: 

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y-z}{2+3-5}=\frac{5}{0}\)( vô lý )

7 tháng 10 2018

\(a)13x\left(x-\dfrac{3}{7}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}13x=0\\x-\dfrac{3}{7}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{3}{7}\end{matrix}\right.\)

Vậy \(x\in\left\{0;\dfrac{3}{7}\right\}\)

b: =>x(5x-1/3)=0

=>x=0 hoặc x=1/15

e: =>x^2(x+3)^2=x^2 và x>=0

\(\Leftrightarrow\left\{{}\begin{matrix}x>=0\\x^2\left(x+3-1\right)\left(x+3+1\right)=0\end{matrix}\right.\Leftrightarrow x=0\)

14 tháng 8 2016

a) x2 - 9 + (x + 3) = 0

=> (x - 3).(x + 3) + (x + 3) = 0

=> (x + 3).(x - 3 + 1) = 0

=> (x + 3).(x - 2) = 0

=> \(\orbr{\begin{cases}x+3=0\\x-2=0\end{cases}}\)=> \(\orbr{\begin{cases}x=-3\\x=2\end{cases}}\)

b) x2 - 5x + 6 = 0

=> x2 - 2x - 3x + 6 = 0

=> x.(x - 2) - 3.(x - 2) = 0

=> (x - 2).(x - 3) = 0

=> \(\orbr{\begin{cases}x-2=0\\x-3=0\end{cases}}\)=> \(\orbr{\begin{cases}x=2\\x=3\end{cases}}\)

\(x^2-9+\left(x+3\right)=0\)

\(\Rightarrow\left(x-3\right)\left(x+3\right)+\left(x+3\right)=0\)

\(\Rightarrow\left(x-3\right)\left(x+4\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=-4\end{cases}}}\)

\(x^2-5x+6=0\)

\(\Rightarrow\left(x-3\right)\left(x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x-3=0\\x-2=0\end{cases}\Rightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}}\)

1 tháng 9 2015

Vì (2x - 5)2000 > 0

    (3y + 4)2002 > 0

=> (2x - 5)2000 + (3y + 4)2002 > 0

Mà theo đề bài (2x - 5)2000 + (3y + 4)2002 < 0

=> Không tìm được giá trị của x; y thỏa mãn đề bài

24 tháng 7 2017

\(\left(x-3\right)^2+\left(y+2\right)^2=0\)

\(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\forall x\\\left(y+2\right)^2\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow\left(x-3\right)^2+\left(y+2\right)^2\ge0\)

Dấu "=" xảy ra khi:

\(\left\{{}\begin{matrix}\left(x-3\right)^2=0\Rightarrow x-3=0\Rightarrow x=3\\\left(y+2\right)^2=0\Rightarrow y+2=0\Rightarrow y=-2\end{matrix}\right.\)

đề sai câu b các câu sau áp dụng tương tự

24 tháng 7 2017

c/ Vì: \(\left(x-12+y\right)^{200}+\left(x-4-x\right)^{200}=0\)

\(\left\{{}\begin{matrix}\left(x-12+y\right)^{200}\ge0\forall x,y\\\left(x-4-y\right)^{200}\ge0\forall x,y\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x-12+y\right)^{200}=0\\\left(x-4-y\right)^{200}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-12+y=0\\x-4-y=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x+y=12\\x-y=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=8\\y=4\end{matrix}\right.\)