Cho x, y >0 thỏa 3x^2+3y^2=10xy
Tính P=x-y / x+y
Mơn các bạn nhìu!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{y-x}{x+y}\)
\(\Rightarrow P^2=\frac{3\left(y-x\right)^2}{3\left(x+y\right)^2}\)
\(P^2=\frac{3\left(y^2-2xy+x^2\right)}{3\left(x^2+2xy+y^2\right)}\)
\(P^2=\frac{3x^2+3y^2-6xy}{3x^2+3y^2+6xy}\)
Thay \(3x^2+3y^2=10xy\)vào \(P^2=\frac{3x^2+3y^2-6xy}{3x^2+3y^2+6xy}\) ta được :
\(P^2=\frac{3x^2+3y^2-6xy}{3x^2+3y^2+6xy}\)
\(P^2=\frac{10xy-6xy}{10xy+6xy}\)
\(P^2=\frac{4xy}{16xy}\)
\(P^2=\frac{1}{4}\)
\(\Leftrightarrow P=\frac{1}{2}\)
Vậy \(P=\frac{y-x}{x+y}=\frac{1}{2}\Leftrightarrow\hept{\begin{cases}x>y>0\\3x^2+3y^2=10xy\end{cases}}\)
Có: \(3x^2+3y^2=10xy\)
\(\Leftrightarrow3x^2-9xy-xy+3y^2=0\)
\(\Leftrightarrow3x\left(x-3y\right)-y\left(x-3y\right)=0\)
\(\Leftrightarrow\left(x-3y\right)\left(3x-y\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-3y=0\\3x-y=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}x=3y\left(KTM:y>x\right)\\3x=y\left(tm\right)\end{cases}}\)
Với \(3x=y\) , ta có: \(K=\frac{x+y}{x-y}=\frac{x+3x}{x-3x}=\frac{4x}{-2x}=-2\)
K2= (\(\frac{X+Y}{X-Y}\))2 = \(\frac{\left(x+y\right)^2}{\left(x-y\right)^2}\)= \(\frac{x^2+2xy+y^2}{x^2-2xy+y^2}\)
= \(\frac{3x^2+6xy+3y^2}{3x^2-6xy+3y^2}\)= \(\frac{10xy+6xy}{10xy-6xy}\)= \(\frac{16xy}{4xy}\)= 4
=> K = -2 hoặc 2
mà y>x>0 nên K =\(\frac{x+y}{x-y}\)<0
=> K = -2
\(P=\frac{y-x}{x+y}\)
\(\Rightarrow P^2=\frac{3\left(y-x\right)^2}{3\left(x+y\right)^2}\)
\(P^2=\frac{3\left(y^2-2xy+x^2\right)}{3\left(x^2+2xy+y^2\right)}\)
\(P^2=\frac{3x^2+3y^2-6xy}{3x^2+3y^2+6xy}\)
Thay \(3x^2+3y^2=10xy\) vào \(P^2=\frac{3x^2+3y^2-6xy}{3x^2+3y^2+6xy}\) , ta được :
\(P^2=\frac{3x^2+3y^2-6xy}{3x^2+3y^2+6xy}\)
\(P^2=\frac{10xy-6xy}{10xy+6xy}\)
\(P^2=\frac{4xy}{16xy}\)
\(P^2=\frac{1}{4}\)
\(\Leftrightarrow P=\frac{1}{2}\)
Vậy \(P=\frac{y-x}{x+y}=\frac{1}{2}\Leftrightarrow\left\{{}\begin{matrix}x>y>0\\3x^2+3y^2=10xy\end{matrix}\right.\)
Xét \(x+y+z=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}y+z=-x\\z+x=-y\\x+y=-z\end{matrix}\right.\)
\(\Rightarrow A=\left(2-1\right)\left(2-1\right)\left(2-1\right)=1\)
Xét \(x+y+z\ne0\) thì ta có:
\(\dfrac{x}{y+z+3x}=\dfrac{y}{z+x+3y}=\dfrac{z}{x+y+3z}=\dfrac{x+y+z}{5x+5y+5z}=\dfrac{x+y+z}{5\left(x+y+z\right)}=\dfrac{1}{5}\)
\(\Rightarrow\left\{{}\begin{matrix}5x=y+z+3x\\5y=z+x+3y\\5z=x+y+3z\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=y+z\\2y=z+x\\2z=x+y\end{matrix}\right.\)
\(\Rightarrow A=\left(2+2\right)\left(2+2\right)\left(2+2\right)=64\)
Vậy \(\left[{}\begin{matrix}A=1\\A=64\end{matrix}\right.\)
Nếu bị lỗi thì bạn có thể xem đây nhé:
Bạn thiếu đề thì phải: x>y>0.
Ta có : \(3x^2+3y^2=10xy\)
=>\(x^2+y^2=\frac{10xy}{3}\)
Ta có x>y>0=>x-y>0 và x+y>0
=>P dương. (1)
Ta có P2=\(\frac{\left(x-y\right)^2}{\left(x+y\right)^2}\)\(=\frac{x^2-2xy+y^2}{x^2+2xy+y^2}=\frac{\frac{10xy}{3}-2xy}{\frac{10xy}{3}+2xy}=\frac{\frac{4}{3}}{\frac{16}{3}}=\frac{1}{4}\)(2)
Từ (1) và (2) => \(P=\frac{1}{2}\)