K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 4 2020

a,bc và pk

cạnh 156 tỉ số 16

58

76

23 tháng 3 2022
ABC cạnh 156 tỉ số 16 58 78

Sửa đề: ΔABC\(\sim\)ΔA'B'C' theo tỉ số đồng dạng \(k_1=\dfrac{2}{3}\)

Vì ΔABC\(\sim\)ΔA'B'C' theo tỉ số đồng dạng \(k_1=\dfrac{2}{3}\)

mà ΔA'B'C' \(\sim\)ΔA''B''C'' theo tỉ số đồng dạng \(k_2=\dfrac{3}{4}\)

nên ΔABC\(\sim\)ΔA''B''C'' theo tỉ số đồng dạng \(k_1\cdot k_2=\dfrac{2}{3}\cdot\dfrac{3}{4}=\dfrac{2}{4}=\dfrac{1}{2}\)

hay ΔA"B"C"\(\sim\)ΔABC theo tỉ số đồng dạng k=2

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AC^2+AB^2=BC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=26^2-24^2=100\)

hay AC=10(cm)

Áp dụng định lí Pytago vào ΔIMN vuông tại I, ta được:

\(IN^2+IM^2=MN^2\)

\(\Leftrightarrow IM^2=MN^2-IN^2=65^2-25^2=3600\)

hay IM=60(cm)

Ta có: \(\dfrac{AC}{IN}=\dfrac{10}{25}=\dfrac{2}{5}\)

\(\dfrac{AB}{IM}=\dfrac{24}{60}=\dfrac{2}{5}\)

\(\dfrac{BC}{MN}=\dfrac{26}{65}=\dfrac{2}{5}\)

Do đó: \(\dfrac{AC}{IN}=\dfrac{AB}{IM}=\dfrac{BC}{MN}\)

Xét ΔABC và ΔIMN có 

\(\dfrac{AC}{IN}=\dfrac{AB}{IM}=\dfrac{BC}{MN}\)(cmt)

Do đó: ΔABC\(\sim\)ΔIMN(c-c-c)

9 tháng 4 2018

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Cách dựng:

- Trên cạnh AB dựng điểm B' sao cho = 2 cm

- Trên cạnh AC dựng điểm C' sao cho AC' = 3cm

- Nối B'C'

Khi đó AB'C' là tam giác cần dựng

* Chứng minh:

Theo cách dựng, ta có:

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Lại có:  ∠ A chung

Vậy △ AB'C' đồng dạng  △ ABC (c.g.c)

b: Xét ΔAMN và ΔABC có 

\(\widehat{AMN}=\widehat{ABC}\)(đồng vị, MN//BC)

góc A chung

Do đó: ΔAMN\(\sim\)ΔABC

8 tháng 4 2022

làm sao v mn