K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2016

undefined

Xét tam giác BDA và tam giác BDE có

BA=BE (gt)

góc ABD=góc EBD

BD:chung

=> tam giác BDA=tam giác BDE (c.g.c)

=> góc BAD=góc BED

Mà góc BAD=90 độ nên góc BED=90 độ

=> DE vuông góc với BE

b) Vì BA=BE nên tam giác ABE cân tại A

Tam giác ABE cân tại A có BD là đường phân giác nên đồng thời là đường trung trực của cạnh AE

 

a) Xét ΔABD và ΔEBD có 

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔABD=ΔEBD(c-g-c)

Suy ra: DA=DE(hai cạnh tương ứng) và \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(gt)

nên \(\widehat{BED}=90^0\)

hay DE⊥BC

Ta có: DA=DE(cmt)

mà DE<DC(ΔDEC vuông tại E có DC là cạnh huyền)

nên DA<DC

b) Ta có: ΔBAC vuông tại A(gt)

nên \(\widehat{ABC}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)(1)

Ta có: ΔEDC vuông tại E(cmt)

nên \(\widehat{EDC}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)(2)

Từ (1) và (2) suy ra \(\widehat{ABC}=\widehat{EDC}\)(đpcm)

c) Ta có: BA=BE(gt)

nên B nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(3)

Ta có: DA=DE(cmt)

nên D nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(4)

Từ (3) và (4) suy ra BD là đường trung trực của AE

hay BD\(\perp\)AE(đpcm)

7 tháng 5 2015

a, cm tam giac BAD=tam giac BED( c.g.c)\(\Rightarrow\)Góc BAD= Góc BED( góc tuong ứng)\(\Rightarrow\)BED= 90o\(\Rightarrow\)DE vuong BE

 

- BA=BE(gt) 

- chung AD

- góc ABD= góc EBD( BD lf tia P.g)

b,xét tam giác BAE có BA=BE(Gt)

\(\Rightarrow\)tam giac BAE Cân tại B

Mà BD là dường phân giác

\(\Rightarrow\)BD đồng thời là đường trung trực của AE

Mới làm dk 2fan nay

7 tháng 5 2017

Kẻ EK vuông góc với DC
Do AH//DC ( vì cùng vuông góc với BC)
nên góc HAE bằng góc DEA( slt)
mà góc DAE bằng góc DEA( Do tam giác ADE có DA=DE nên Tam giác ADE cân tại D)
suy ra góc HAE bằng góc DAE
xét tam giác HAE và tam giác KAE:
.AE là cạnh huyền chung
.góc HAE bằng góc DAE
suy ra :tam giác HAE = tam giác KAE( ch-gn)
suy ra EH=EK (1)
Ta lại có  tam giác EKC vuông tại K nên:
EK<EC( cạnh góc vuông bé hơn cạnh huyền) (2)
Từ (1) và (2) suy ra EH<EC

2 tháng 3 2022

Xét \(\Delta DBC\) và \(\Delta DBE:\)

BD chung.

BE = BC (gt).

\(\widehat{CBD}=\widehat{EBD}\) (BD là phân giác\(\widehat{B}\)).

\(\Rightarrow\) \(\Delta DBC=\Delta DBE\left(c-g-c\right).\)

\(\Rightarrow DC=DE\) ( cạnh tương ứng).

14 tháng 12 2022

a: Xét ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD

BD chung

Do dó: ΔBAD=ΔBED

=>DA=DE
b: Sửa đề: BD vuông góc với AE

Ta có: BA=BE

DA=DE

Do đó; BD là trung trực của AE

=>BD vuông góc với AE

c: Xét ΔBFC có BA/AF=BE/EC

nên AE//CF

a.Ta có:

⎧⎪⎨⎪⎩BA=BEˆABD=ˆDBEchungBD→ΔABD=ΔEBD(c.g.c){BA=BEABD^=DBE^chungBD→ΔABD=ΔEBD(c.g.c)

b.Từ câu a→ˆBED=ˆBAD=90o→BED^=BAD^=90o

→DE⊥BC→DE⊥BC

c.Ta có:

ˆBKD+ˆADK=ˆACB+ˆDEC=90oBKD^+ADK^=ACB^+DEC^=90o

→ˆBKD=ˆACB→BKD^=ACB^

→ΔBDK=ΔBDC(g.c.g)→ΔBDK=ΔBDC(g.c.g)

→BK=BC→BK=BC

image  
23 tháng 11 2016

Ta có hình vẽ:

A B C D E H

a) Vì BD là phân giác của ABC nên ABD = CBD

Xét Δ ABD và Δ EBD có:

BA = BE (gt)

ABD = EBD (cmt)

BD là cạnh chung

Do đó, Δ ABD = Δ EBD (c.g.c)

=> AD = DE (2 cạnh tương ứng) (đpcm)

b) Δ ABD = Δ EBD (câu a) => BAD = BED = 90o (2 góc tương ứng)

=> Δ DEC vuông tại E

Δ ABC vuông tại A có: ABC + C = 90o (1)

Δ CED vuông tại E có: EDC + C = 90o (2)

Từ (1) và (2) => ABC = EDC (đpcm)

c) Gọi giao điểm của AE và BD là H

Xét Δ ABH và Δ EBH có:

AB = BE (gt)

ABH = EBH (câu a)

BH là cạnh chung

Do đó, Δ ABH = Δ EBH (c.g.c)

=> BHA = BHE (2 góc tương ứng)

Mà BHA + BHE = 180o (kề bù) nên BHA = BHE = 90o

=> \(BH\perp AE\) hay \(BD\perp AE\left(đpcm\right)\)

5 tháng 12 2016

học ngu vl

bucminh

DD
19 tháng 12 2020

Xét \(\Delta ABD\)và \(\Delta EBD\)có: 

\(AB=EB\)(giả thiết) 

\(\widehat{ABD}=\widehat{EBD}\)(vì \(BD\)là phân giác của \(\widehat{ABC}\))

\(BD\)cạnh chung

\(\Rightarrow\Delta ABD=\Delta EBD\)(c.g.c) 

\(\Rightarrow\widehat{BED}=\widehat{BAD}=90^o\)(Hai góc tương ứng) 

\(\Rightarrow DE\perp BC\).