K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2022

Xét \(\Delta DBC\) và \(\Delta DBE:\)

BD chung.

BE = BC (gt).

\(\widehat{CBD}=\widehat{EBD}\) (BD là phân giác\(\widehat{B}\)).

\(\Rightarrow\) \(\Delta DBC=\Delta DBE\left(c-g-c\right).\)

\(\Rightarrow DC=DE\) ( cạnh tương ứng).

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

Suy ra: DA=DE

b: Ta có: BA=BE

nên B nằm trên đường trung trực của AE(1)

ta có: DA=DE

nên D nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE

a) Xét ΔABD và ΔEBD có 

BA=BE(gt)

\(\widehat{ABD}=\widehat{EBD}\)(BD là tia phân giác của \(\widehat{ABE}\))

BD chung

Do đó: ΔABD=ΔEBD(c-g-c)

Suy ra: DA=DE(hai cạnh tương ứng) và \(\widehat{BAD}=\widehat{BED}\)(hai góc tương ứng)

mà \(\widehat{BAD}=90^0\)(gt)

nên \(\widehat{BED}=90^0\)

hay DE⊥BC

Ta có: DA=DE(cmt)

mà DE<DC(ΔDEC vuông tại E có DC là cạnh huyền)

nên DA<DC

b) Ta có: ΔBAC vuông tại A(gt)

nên \(\widehat{ABC}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)(1)

Ta có: ΔEDC vuông tại E(cmt)

nên \(\widehat{EDC}+\widehat{C}=90^0\)(hai góc nhọn phụ nhau)(2)

Từ (1) và (2) suy ra \(\widehat{ABC}=\widehat{EDC}\)(đpcm)

c) Ta có: BA=BE(gt)

nên B nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(3)

Ta có: DA=DE(cmt)

nên D nằm trên đường trung trực của AE(Tính chất đường trung trực của một đoạn thẳng)(4)

Từ (3) và (4) suy ra BD là đường trung trực của AE

hay BD\(\perp\)AE(đpcm)

a: Xét ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD

BD chung

Do đó: ΔBAD=ΔBED

=>BA=BE

=>ΔBAE cân tại B

b: ΔBAD=ΔBED

=>góc BED=90 độ

=>DE vuông góc với BC

c: ΔBAD=ΔBED

=>BA=BE và DA=DE
=>BD là trung trực của AE

4 tháng 1 2023

nếu bạn không phiền thì có thể vẽ hình ra được không ạ :((

a: Xét ΔABD và ΔEBD có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔABD=ΔEBD

b: Ta có: ΔBAD=ΔBED

nên \(\widehat{BAD}=\widehat{BED}=90^0\)

hay DE\(\perp\)BC

c: Xét ΔADK vuông tại A và ΔEDC vuông tại E có

DA=DE

\(\widehat{ADK}=\widehat{EDC}\)

Do đó: ΔADK=ΔEDC

Suy ra: AK=EC

Ta có: BA+AK=BK

BE+EC=BC

mà BA=BE

và AK=EC

nên BK=BC

10 tháng 10 2017

B A D C E

a) Xét tam gics BAD và BED ta có:

BD là cạnh chung (gt)

AB=AE (gt)

Góc ABD=góc DBC ( vid BD là phân giác của gốc B)

=> Tam giác BAD=tam gics BED (c.g.c)

=>AD=DE ( 2 cạnh tương ứng)

=> Tam giác BAD= tam giác BED

=> góc BAD=BED(2 góc tương ứng)

=>BED=BAD=90*

Xét tam giác ABC và EDC ta cosL'

BAC=DEC=90*

góc C chung

=> tam giác ABC~tam giác EDC (g-g)

=> goác ABC=EDC

b) Xét tam giác ABE ta có:

AB=BE

=> tam giác ABE cân tại B

mà BD là tia phân giác của góc B

=> BD là đường cao

=> BD vuông góc vs AE

28 tháng 11 2017

g-g là j

*Tự vẽ hình

a) Xét tam giác ABD và EBD có :

\(\widehat{ABD}=\widehat{DBE}\left(gt\right)\)

BD : cạnh chung

BA=BE(gt)

=> Tam giác ABD=EBD(c.g.c)

=> AD=DE

và \(\widehat{BAD}=\widehat{DEB}=90^o\)

\(\Rightarrow\widehat{BAD}=\widehat{DEC}=90^o\)

b) Gọi giao điểm của BD và AE là O

Tam giác ABO=EBO(c.g.c) (tự cm)

=> \(\widehat{BOA}=\widehat{BOE}\)

Mà : \(\widehat{BOA}+\widehat{BOE}=180^o\)

\(\Rightarrow\widehat{BOA}=90^o\)

\(\Rightarrow AE\perp BD\left(đccm\right)\)

#H

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:a) BD là đường trung trực của AE.b) AD<DCc) Ba điểm E, D, F thẳng hàngBài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.a) Tính BCb) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCBc) Trên tia đối của tia DB lấy điểm E sao cho...
Đọc tiếp

Bài 1: Cho tam giác vuông ABC, góc A = 90o, phân giác BD. Kẻ BD vuông góc BC tại E. Trên tia đối của tia AB lấy điểm F sao cho AF = CE. Chứng minh rằng:

a) BD là đường trung trực của AE.

b) AD<DC

c) Ba điểm E, D, F thẳng hàng

Bài 2: Cho tam giác vuông ABC, góc A = 90o , AB = 6cm, AC = 8cm.

a) Tính BC

b) Trung trực của BC cắt AC tại D và cắt AB tại F. Chứng minh góc DBC = góc DCB

c) Trên tia đối của tia DB lấy điểm E sao cho DE=DC. Chứng minh tam giác BCE vuông

d)Chứng minh:DF là phân giác của góc ADE và BE vuông góc CF

Bải 3: Cho tam giác đều ABC. Tia phân giác góc B cắt cạnh AC ở M. Từ A kẻ đường thẳng vuông góc với AB cắt các tia BM, BC lần lượt ở M và E. Chứng minh:

a) Tam giác ANC là tam giác cân

b) NC vuông góc BC

c) Tam giác AEC là tam giác cân

d) So sánh BC và NE

Bài 4: Cho tam giác nhọn ABC, kẻ BM vuông góc AC, CN vuông góc AB. Trên tia đối của tia BM lấy điểm D sao cho BD=AC, trên tia đối của tia CN lấy điểm E sao cho CE=AB. Chứng minh:

a) Góc ACE= góc ABD

b) Tam giác ABD = tam giác ECA

c) Tam giác AED là tam giác vuông cân

0

a: Xét ΔBAD và ΔBED có

BA=BE

góc ABD=góc EBD

BD chung

=>ΔBAD=ΔBED

=>DA=DE

b: CK vuông góc AC

AB vuông góc AC

=>CK//AB

=>góc CKB=góc ABD

=>góc CKB=góc CBD

=>ΔCBK cân tại C

d: ΔABD vuông tại A

=>góc ADB<90 độ

=>góc BDC>90 độ

=>BD<BC