So sánh : a, \(\sqrt{3}+\sqrt{5}với\sqrt{17}\)
b,\(\sqrt{2004}+\sqrt{2006}với2\sqrt{2005}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\sqrt{2004}-\sqrt{2003}=\dfrac{1}{\sqrt{2004}+\sqrt{2003}}\)
\(\sqrt{2006}-\sqrt{2005}=\dfrac{1}{\sqrt{2006}+\sqrt{2005}}\)
Mà \(\sqrt{2004}+\sqrt{2003}< \sqrt{2006}< \sqrt{2005}\)
\(\Rightarrow\dfrac{1}{\sqrt{2004}+\sqrt{2003}}>\dfrac{1}{\sqrt{2006}+\sqrt{2005}}\)
\(\Rightarrow\sqrt{2004}-\sqrt{2003}>\sqrt{2006}-\sqrt{2005}\)
lấy vế đầu trừ vế sau nếu kết quả dương suy ra vế đầu lớn hơn nếu kq âm thì vế sau lớn hơn
có\(\sqrt{2006}-\sqrt{2005}=\frac{\left(\sqrt{2006}-\sqrt{2005}\right)\left(\sqrt{2006}+\sqrt{2005}\right)}{\sqrt{2006}+\sqrt{2005}}\)\(=\frac{1}{\sqrt{2006}+\sqrt{2005}}\)
có\(\sqrt{2005}-\sqrt{2004}=\frac{\left(\sqrt{2005}-\sqrt{2004}\right)\left(\sqrt{2005}+\sqrt{2004}\right)}{\sqrt{2005}+\sqrt{2004}}\)\(=\frac{1}{\sqrt{2005}+\sqrt{2004}}\)
ta lại có 2006>2005\(\Rightarrow\sqrt{2006}>\sqrt{2005}\)có 2005>2004\(\Rightarrow\sqrt{2005}>\sqrt{2004}\)
\(\Rightarrow\sqrt{2006}+\sqrt{2005}>\sqrt{2005}+\sqrt{2004}\)\(\Rightarrow\frac{1}{\sqrt{2006}+\sqrt{2005}}< \frac{1}{\sqrt{2005}+\sqrt{2004}}\)
\(\Rightarrow\sqrt{2006}-\sqrt{2005}>\sqrt{2005}-\sqrt{2004}\)
\(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}×\sqrt{2004-2\sqrt{2006}-2\sqrt{2005}}=\sqrt{2004-2\sqrt{2006-2\sqrt{2005}}}\)
Giả sử : \(\sqrt{2004}+\sqrt{2006}< 2\sqrt{2005}\)
\(\Leftrightarrow2004+2006+2\sqrt{2004.2006}< 4.2005\)
\(\Leftrightarrow\sqrt{2004.2006}< 2005\Leftrightarrow2004.2006< 2005^2\)
\(\Leftrightarrow\left(2005-1\right)\left(2005+1\right)< 2005^2\)
\(\Leftrightarrow2005^2-1< 2005^2\) . BĐT đúng
Vậy \(\sqrt{2004}+\sqrt{2006}< 2\sqrt{2005}\)
Giả sử : \(\sqrt{2004}+\sqrt{2006}< 2\sqrt{2005}\)
\(\Leftrightarrow2004+2006+2\sqrt{2004.2006}< 4.2005\)
\(\Leftrightarrow\sqrt{2004.2006}< 2005\Leftrightarrow2004.2006< 2005^2\)
\(\Leftrightarrow\left(2005-1\right)\left(2005+1\right)< 2005^2\)
\(\Leftrightarrow2005^2-1< 2005^2.\) BĐT đúng
Vậy \(\sqrt{2004}+\sqrt{2006}< 2\sqrt{2005}\)
a: \(\left(\sqrt{3}+\sqrt{5}\right)^2=8+\sqrt{60}\)
\(\left(\sqrt{17}\right)^2=17=8+\sqrt{81}\)
mà 60<81
nên \(3+\sqrt{5}< \sqrt{17}\)
c: \(\left(\sqrt{2004}+\sqrt{2006}\right)^2=4010+2\cdot\sqrt{2005^2-1}\)
\(\left(2\cdot\sqrt{2005}\right)^2=8020=4010+2\cdot\sqrt{2005^2}\)
mà \(2005^2-1< 2005^2\)
nên \(\sqrt{2004}+\sqrt{2006}< 2\sqrt{2005}\)
d: \(\left(\sqrt{5}+2\right)^2=9+4\sqrt{5}=9+\sqrt{80}\)
\(\left(\sqrt{3}+\sqrt{6}\right)^2=9+2\cdot\sqrt{3\cdot6}=9+\sqrt{72}\)
mà 80>72
nên \(\sqrt{5}+2>\sqrt{3}+\sqrt{6}\)